9.3. Математические функции и операторы

Математические операторы определены для множества типов Postgres Pro. Как работают эти операции с типами, для которых нет стандартных соглашений о математических действиях (например, с типами даты/времени), мы опишем в последующих разделах.

В Таблице 9.4 перечислены все доступные математические операторы.

Таблица 9.4. Математические операторы

ОператорОписаниеПримерРезультат
+сложение2 + 35
-вычитание2 - 3-1
*умножение2 * 36
/деление (при целочисленном делении остаток отбрасывается)4 / 22
%остаток от деления5 % 41
^возведение в степень (вычисляется слева направо)2.0 ^ 3.08
|/квадратный корень|/ 25.05
||/кубический корень||/ 27.03
!факториал (устаревший оператор, его заменяет функция factorial())5 !120
!!факториал в префиксной форме (устаревший оператор, его заменяет функция factorial())!! 5120
@модуль числа (абсолютное значение)@ -5.05
&битовый AND91 & 1511
|битовый OR32 | 335
#битовый XOR17 # 520
~битовый NOT~1-2
<<битовый сдвиг влево1 << 416
>>битовый сдвиг вправо8 >> 22

Битовые операторы работают только с целочисленными типами данных и с битовыми строками bit и bit varying, как показано в Таблице 9.13.

В Таблице 9.5 перечислены все существующие математические функции. Сокращение dp в ней обозначает тип double precision (плавающее с двойной точностью). Многие из этих функций имеют несколько форм с разными типами аргументов. За исключением случаев, где это указано явно, любая форма функции возвращает результат того же типа, что и аргумент. Функции, работающие с данными double precision, в массе своей используют реализации из системных библиотек сервера, поэтому точность и поведение в граничных случаях может зависеть от системы сервера.

Таблица 9.5. Математические функции

ФункцияТип результатаОписаниеПримерРезультат
abs(x)тип аргументамодуль числа (абсолютное значение)abs(-17.4)17.4
cbrt(dp)dpкубический кореньcbrt(27.0)3
ceil(dp или numeric)тип аргументаближайшее целое, большее или равное аргументуceil(-42.8)-42
ceiling(dp или numeric)тип аргументаближайшее целое, большее или равное аргументу (равнозначно ceil)ceiling(-95.3)-95
degrees(dp)dpпреобразование радианов в градусыdegrees(0.5)28.6478897565​412
div(y numeric, x numeric)numericцелочисленный результат y/xdiv(9,4)2
exp(dp или numeric)тип аргументаэкспонентаexp(1.0)2.7182818284​5905
factorial(bigint)numericфакториалfactorial(5)120
floor(dp или numeric)тип аргументаближайшее целое, меньшее или равное аргументуfloor(-42.8)-43
ln(dp или numeric)тип аргументанатуральный логарифмln(2.0)0.6931471805​59945
log(dp или numeric)тип аргументалогарифм по основанию 10log(100.0)2
log(b numeric, x numeric)numericлогарифм по основанию blog(2.0, 64.0)6.0000000000
mod(y, x)зависит от типов аргументовостаток от деления y/xmod(9,4)1
pi()dpконстанта «π»pi()3.1415926535​8979
power(a dp, b dp)dpa возводится в степень bpower(9.0, 3.0)729
power(a numeric, b numeric)numerica возводится в степень bpower(9.0, 3.0)729
radians(dp)dpпреобразование градусов в радианыradians(45.0)0.7853981633​97448
round(dp или numeric)тип аргументаокругление до ближайшего целогоround(42.4)42
round(v numeric, s int)numericокругление v до s десятичных знаковround(42.4382, 2)42.44
scale(numeric)integerмасштаб аргумента (число десятичных цифр в дробной части)scale(8.41)2
sign(dp или numeric)тип аргументазнак аргумента (-1, 0, +1)sign(-8.4)-1
sqrt(dp или numeric)тип аргументаквадратный кореньsqrt(2.0)1.4142135623​731
trunc(dp или numeric)тип аргументаокругление к нулюtrunc(42.8)42
trunc(v numeric, s int)numericокругление к 0 до s десятичных знаковtrunc(42.4382, 2)42.43
width_bucket(operand dp, b1 dp, b2 dp, count int)intвозвращает номер группы, в которую попадёт operand в гистограмме с числом групп count равного размера, в диапазоне от b1 до b2; возвращает 0 или count+1, если операнд лежит вне диапазонаwidth_bucket(5.35, 0.024, 10.06, 5)3
width_bucket(operand numeric, b1 numeric, b2 numeric, count int)intвозвращает номер группы, в которую попадёт operand в гистограмме с числом групп count равного размера, в диапазоне от b1 до b2; возвращает 0 или count+1, если операнд лежит вне диапазонаwidth_bucket(5.35, 0.024, 10.06, 5)3
width_bucket(operand anyelement, thresholds anyarray)intвозвращает номер группы, в которую попадёт operand (группы определяются нижними границами, передаваемыми в thresholds); возвращает 0, если операнд оказывается левее нижней границы; массив thresholds должен быть отсортирован по возрастанию, иначе будут получены неожиданные результатыwidth_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[])2

В Таблице 9.6 перечислены все функции для генерации случайных чисел.

Таблица 9.6. Случайные функции

ФункцияТип результатаОписание
random()dpслучайное число в диапазоне 0.0 <= x < 1.0
setseed(dp)voidзадаёт отправную точку для последующих вызовов random() (значение между -1.0 и 1.0, включая границы)

Характеристики значений, возвращаемых функцией random() зависят от системы. Для применения в криптографии они непригодны; альтернативы описаны в pgcrypto.

Наконец, в Таблице 9.7 перечислены все имеющиеся тригонометрические функции. Все эти функции принимают аргументы и возвращают значения типа double precision. У каждой функции имеются две вариации: одна измеряет углы в радианах, а вторая — в градусах.

Таблица 9.7. Тригонометрические функции

Функции (в радианах)Функции (в градусах)Описание
acos(x)acosd(x)арккосинус
asin(x) asind(x)арксинус
atan(x) atand(x)арктангенс
atan2(y, x) atan2d(y, x)арктангенс y/x
cos(x) cosd(x)косинус
cot(x) cotd(x)котангенс
sin(x) sind(x)синус
tan(x) tand(x)тангенс

Примечание

Также можно работать с углами в градусах, применяя вышеупомянутые функции преобразования единиц radians() и degrees(). Однако предпочтительнее использовать тригонометрические функции с градусами, так как это позволяет избежать ошибок округления в особых случаях, например, при вычислении sind(30).

45.8. Explicit Subtransactions

Recovering from errors caused by database access as described in Section 45.7.2 can lead to an undesirable situation where some operations succeed before one of them fails, and after recovering from that error the data is left in an inconsistent state. PL/Python offers a solution to this problem in the form of explicit subtransactions.

45.8.1. Subtransaction Context Managers

Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
    plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
    plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
    result = "error transferring funds: %s" % e.args
else:
    result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

If the second UPDATE statement results in an exception being raised, this function will report the error, but the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn from Joe's account, but will not be transferred to Mary's account.

To avoid such issues, you can wrap your plpy.execute calls in an explicit subtransaction. The plpy module provides a helper object to manage explicit subtransactions that gets created with the plpy.subtransaction() function. Objects created by this function implement the context manager interface. Using explicit subtransactions we can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
    with plpy.subtransaction():
        plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
        plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
    result = "error transferring funds: %s" % e.args
else:
    result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note that the use of try/except is still required. Otherwise the exception would propagate to the top of the Python stack and would cause the whole function to abort with a PostgreSQL error, so that the operations table would not have any row inserted into it. The subtransaction context manager does not trap errors, it only assures that all database operations executed inside its scope will be atomically committed or rolled back. A rollback of the subtransaction block occurs on any kind of exception exit, not only ones caused by errors originating from database access. A regular Python exception raised inside an explicit subtransaction block would also cause the subtransaction to be rolled back.

45.8.2. Older Python Versions

Context managers syntax using the with keyword is available by default in Python 2.6. For compatibility with older Python versions, you can call the subtransaction manager's __enter__ and __exit__ functions using the enter and exit convenience aliases. The example function that transfers funds could be written as:

CREATE FUNCTION transfer_funds_old() RETURNS void AS $$
try:
    subxact = plpy.subtransaction()
    subxact.enter()
    try:
        plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
        plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
    except:
        import sys
        subxact.exit(*sys.exc_info())
        raise
    else:
        subxact.exit(None, None, None)
except plpy.SPIError as e:
    result = "error transferring funds: %s" % e.args
else:
    result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;