13.3. Явные блокировки

Для управления параллельным доступом к данным в таблицах PostgreSQL предоставляет несколько режимов явных блокировок. Эти режимы могут применяться для блокировки данных со стороны приложения в ситуациях, когда MVCC не даёт желаемый результат. Кроме того, большинство команд PostgreSQL автоматически получают блокировки соответствующих режимов, защищающие от удаления или изменения задействованных таблиц, несовместимого с характером выполняемой команды. (Например, TRUNCATE не может безопасно выполняться одновременно с другими операциями с этой таблицей, так что во избежание конфликта эта команда получает исключительную блокировку для данной таблицы.)

Список текущих активных блокировок на сервере можно получить, прочитав системное представление pg_locks. За дополнительными сведениями о наблюдении за состоянием менеджера блокировок обратитесь к Главе 27.

13.3.1. Блокировки на уровне таблицы

В приведённом ниже списке перечислены имеющиеся режимы блокировок и контексты, где их автоматически применяет PostgreSQL. Вы можете также явно запросить любую из этих блокировок с помощью команды LOCK. Помните, что все эти режимы работают на уровне таблицы, даже если имя режима содержит слово «row»; такие имена сложились исторически. В некоторой степени эти имена отражают типичное применение каждого режима блокировки, но смысл у всех один. Единственное, что действительно отличает один режим блокировки от другого, это набор режимов, с которыми конфликтует каждый из них (см. Таблицу 13.2). Две транзакции не могут одновременно владеть блокировками конфликтующих режимов для одной и той же таблицы. (Однако учтите, что транзакция никогда не конфликтует с собой. Например, она может запросить блокировку ACCESS EXCLUSIVE, а затем ACCESS SHARE для той же таблицы.) При этом разные транзакции свободно могут одновременно владеть блокировками неконфликтующих режимов. Заметьте, что некоторые режимы блокировки конфликтуют сами с собой (например, блокировкой ACCESS EXCLUSIVE в один момент времени может владеть только одна транзакция), а некоторые — нет (например, блокировку ACCESS SHARE могут получить сразу несколько транзакций).

Режимы блокировок на уровне таблицы

ACCESS SHARE

Конфликтует только с режимом блокировки ACCESS EXCLUSIVE.

Команда SELECT получает такую блокировку для таблиц, на которые она ссылается. Вообще говоря, блокировку в этом режиме получает любой запрос, который только читает таблицу, но не меняет её данные.

ROW SHARE

Конфликтует с режимами блокировки EXCLUSIVE и ACCESS EXCLUSIVE.

Команды SELECT FOR UPDATE и SELECT FOR SHARE получают такую блокировку для своих целевых таблиц (помимо блокировок ACCESS SHARE для любых таблиц, которые используется в этих запросах, но не в предложении FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Конфликтует с режимами блокировки SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE.

Команды UPDATE, DELETE и INSERT получают такую блокировку для целевой таблицы (в дополнение к блокировкам ACCESS SHARE для всех других задействованных таблиц). Вообще говоря, блокировку в этом режиме получает любая команда, которая изменяет данные в таблице.

SHARE UPDATE EXCLUSIVE

Конфликтует с режимами блокировки SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE. Этот режим защищает таблицу от параллельного изменения схемы и запуска процесса VACUUM.

Запрашивается командами VACUUM (без FULL), ANALYZE, CREATE INDEX CONCURRENTLY, ALTER TABLE VALIDATE и другими видами ALTER TABLE (за подробностями обратитесь к ALTER TABLE).

SHARE

Конфликтует с режимами блокировки ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE. Этот режим защищает таблицу от параллельного изменения данных.

Запрашивается командой CREATE INDEX (без параметра CONCURRENTLY).

SHARE ROW EXCLUSIVE

Конфликтует с режимами блокировки ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE. Этот режим защищает таблицу от параллельных изменений данных и при этом он является самоисключающим, так что такую блокировку может получить только один сеанс.

Запрашивается командой CREATE TRIGGER и многими формами ALTER TABLE (см. ALTER TABLE).

EXCLUSIVE

Конфликтует с режимами блокировки ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE. Этот режим совместим только с блокировкой ACCESS SHARE, то есть параллельно с транзакцией, получившей блокировку в этом режиме, допускается только чтение таблицы.

Запрашивается командой REFRESH MATERIALIZED VIEW CONCURRENTLY.

ACCESS EXCLUSIVE

Конфликтует со всеми режимами блокировки (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE и ACCESS EXCLUSIVE). Этот режим гарантирует, что кроме транзакции, получившей эту блокировку, никакая другая транзакция не может обращаться к таблице каким-либо способом.

Запрашивается командами DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL и REFRESH MATERIALIZED VIEW (без CONCURRENTLY). Блокировку на этом уровне запрашивают также многие виды ALTER TABLE. В этом режиме по умолчанию запрашивают блокировку и операторы LOCK TABLE, если явно не выбран другой режим.

Подсказка

Только блокировка ACCESS EXCLUSIVE блокирует оператор SELECT (без FOR UPDATE/SHARE).

Полученная транзакцией блокировка обычно сохраняется до конца транзакции. Но если блокировка получена после установки точки сохранения, она освобождается немедленно в случае отката к этой точке. Это согласуется с принципом действия ROLLBACK — эта команда отменяет эффекты всех команд после точки сохранения. То же справедливо и для блокировок, полученных в блоке исключений PL/pgSQL: при выходе из блока с ошибкой такие блокировки освобождаются.

Таблица 13.2. Конфликтующие режимы блокировки

Запраши​ваемый режим блоки​ровкиТекущий режим блокировки
ACCESS SHAREROW SHAREROW EXCLUSIVESHARE UPDATE EXCLUSIVESHARESHARE ROW EXCLUSIVEEXCLU​SIVEACCESS EXCLUSIVE
ACCESS SHARE       X
ROW SHARE      XX
ROW EXCLUSIVE    XXXX
SHARE UPDATE EXCLUSIVE   XXXXX
SHARE  XX XXX
SHARE ROW EXCLUSIVE  XXXXXX
EXCLU​SIVE XXXXXXX
ACCESS EXCLUSIVEXXXXXXXX

13.3.2. Блокировки на уровне строк

Помимо блокировок на уровне таблицы, существуют блокировки на уровне строк, перечисленные ниже с контекстами, где PostgreSQL применяет их по умолчанию. Полный перечень конфликтов блокировок на уровне строк приведён в Таблице 13.3. Заметьте, что одна транзакция может владеть несколькими конфликтующими блокировками одной строки, даже в разных подтранзакциях; но две разных транзакции никогда не получат конфликтующие блокировки одной и той же строки. Блокировки на уровне строк блокируют только запись в определённые строки, но никак не влияют на выборку. Снимаются такие блокировки, как и блокировки на уровне таблицы, в конце транзакции или при откате к точке сохранения.

Режимы блокировки на уровне строк

FOR UPDATE

В режиме FOR UPDATE строки, выданные оператором SELECT, блокируются как для изменения. При этом они защищаются от блокировки, изменения и удаления другими транзакциями до завершения текущей. То есть другие транзакции, пытающиеся выполнить UPDATE, DELETE, SELECT FOR UPDATE, SELECT FOR NO KEY UPDATE, SELECT FOR SHARE или SELECT FOR KEY SHARE с этими строками, будут заблокированы до завершения текущей транзакции; и наоборот, команда SELECT FOR UPDATE будет ожидать окончания параллельной транзакции, в которой выполнилась одна из этих команд с той же строкой, а затем установит блокировку и вернёт изменённую строку (или не вернёт, если она была удалена). Однако в транзакции REPEATABLE READ или SERIALIZABLE возникнет ошибка, если блокируемая строка изменилась с момента начала транзакции. Подробнее это обсуждается в Разделе 13.4.

Режим блокировки FOR UPDATE также запрашивается на уровне строки любой командой DELETE и командой UPDATE, изменяющей значения определённых столбцов. В настоящее время блокировка с UPDATE касается столбцов, по которым создан уникальный индекс, применимый в качестве внешнего ключа (так что на частичные индексы и индексы выражений это не распространяется), но в будущем это может поменяться.

FOR NO KEY UPDATE

Действует подобно FOR UPDATE, но запрашиваемая в этом режиме блокировка слабее: она не будет блокировать команды SELECT FOR KEY SHARE, пытающиеся получить блокировку тех же строк. Этот режим блокировки также запрашивается любой командой UPDATE, которая не требует блокировки FOR UPDATE.

FOR SHARE

Действует подобно FOR NO KEY UPDATE, за исключением того, что для каждой из полученных строк запрашивается разделяемая, а не исключительная блокировка. Разделяемая блокировка не позволяет другим транзакциям выполнять с этими строками UPDATE, DELETE, SELECT FOR UPDATE или SELECT FOR NO KEY UPDATE, но допускает SELECT FOR SHARE и SELECT FOR KEY SHARE.

FOR KEY SHARE

Действует подобно FOR SHARE, но устанавливает более слабую блокировку: блокируется SELECT FOR UPDATE, но не SELECT FOR NO KEY UPDATE. Блокировка разделяемого ключа не позволяет другим транзакциям выполнять команды DELETE и UPDATE, только если они меняют значение ключа (но не другие UPDATE), и при этом допускает выполнение команд SELECT FOR NO KEY UPDATE, SELECT FOR SHARE и SELECT FOR KEY SHARE.

PostgreSQL не держит информацию об изменённых строках в памяти, так что никаких ограничений на число блокируемых строк нет. Однако блокировка строки может повлечь запись на диск, например, если SELECT FOR UPDATE изменяет выбранные строки, чтобы заблокировать их, при этом происходит запись на диск.

Таблица 13.3. Конфликтующие блокировки на уровне строк

Запраши​ваемый режим блоки​ровкиТекущий режим блокировки
FOR KEY SHAREFOR SHAREFOR NO KEY UPDATEFOR UPDATE
FOR KEY SHARE   X
FOR SHARE  XX
FOR NO KEY UPDATE XXX
FOR UPDATEXXXX

13.3.3. Блокировки на уровне страниц

В дополнение к блокировкам на уровне таблицы и строк, для управления доступом к страницам таблиц в общих буферах используются блокировки на уровне страниц, исключительные и разделяемые. Эти блокировки освобождаются немедленно после выборки или изменения строк. Разработчикам приложений обычно можно не задумываться о блокировках страниц, здесь они упоминаются только для полноты картины.

13.3.4. Взаимоблокировки

Частое применение явных блокировок может увеличить вероятность взаимоблокировок, то есть ситуаций, когда две (или более) транзакций держат блокировки так, что взаимно блокируют друг друга. Например, если транзакция 1 получает исключительную блокировку таблицы A, а затем пытается получить исключительную блокировку таблицы B, которую до этого получила транзакция 2, в данный момент требующая исключительную блокировку таблицы A, ни одна из транзакций не сможет продолжить работу. PostgreSQL автоматически выявляет такие ситуации и разрешает их, прерывая одну из сцепившихся транзакций и тем самым позволяя другой (другим) продолжить работу. (Какая именно транзакция будет прервана, обычно сложно предсказать, так что рассчитывать на определённое поведение не следует.)

Заметьте, что взаимоблокировки могут вызываться и блокировками на уровне строк (таким образом, они возможны, даже если не применяются явные блокировки). Рассмотрим случай, когда две параллельных транзакции изменяют таблицу. Первая транзакция выполняет:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

При этом она получает блокировку строки с указанным номером счёта. Затем вторая транзакция выполняет:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

Первый оператор UPDATE успешно получает блокировку указанной строки и изменяет данные в ней. Однако второй оператор UPDATE обнаруживает, что строка, которую он пытается изменить, уже заблокирована, так что он ждёт завершения транзакции, получившей блокировку. Таким образом, вторая транзакция сможет продолжиться только после завершения первой. Теперь первая транзакция выполняет:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Первая транзакция пытается получить блокировку заданной строки, но ей это не удаётся: эта блокировка уже принадлежит второй транзакции. Поэтому первой транзакции остаётся только ждать завершения второй. В результате первая транзакция блокируется второй, а вторая — первой: происходит взаимоблокировка. PostgreSQL выявляет эту ситуацию и прерывает одну из транзакций.

Обычно лучший способ предотвращения взаимоблокировок — добиться, чтобы все приложения, обращающиеся к базе данных, запрашивали блокировки нескольких объектов единообразно. В данном примере, если бы обе транзакции изменяли строки в одном порядке, взаимоблокировка бы не произошла. Блокировки в транзакции следует упорядочивать так, чтобы первой для какого-либо объекта запрашивалась наиболее ограничивающая из тех, которые для него потребуются. Если заранее обеспечить такой порядок нельзя, взаимоблокировки можно обработать по факту, повторяя прерванные транзакции.

Если ситуация взаимоблокировки не будет выявлена, транзакция, ожидающая блокировки на уровне таблицы или строки, будет ждать её освобождения неограниченное время. Это означает, что приложения не должны оставлять транзакции открытыми долгое время (например, ожидая ввода пользователя).

13.3.5. Рекомендательные блокировки

PostgreSQL также имеет средства создания блокировок, смысл которых определяют сами приложения. Такие блокировки называются рекомендательными, так как система не форсирует их использование — правильно их использовать должно само приложение. Рекомендательные блокировки бывают полезны для реализаций стратегий блокирования, плохо вписывающихся в модель MVCC. Например, рекомендательные блокировки часто применяются для исполнения стратегии пессимистичной блокировки, типичной для систем управления данными «плоский файл». Хотя для этого можно использовать и дополнительные флаги в таблицах, рекомендательные блокировки работают быстрее, не нагружают таблицы и автоматически ликвидируется сервером в конце сеанса.

В PostgreSQL есть два варианта получить рекомендательные блокировки: на уровне сеанса и на уровне транзакции. Рекомендательная блокировка, полученная на уровне сеанса, удерживается, пока она не будет явно освобождена, или до конца сеанса. В отличие от стандартных рекомендательные блокировки уровня сеанса нарушают логику транзакций — блокировка, полученная в транзакции, даже если произойдёт откат этой транзакции, будет сохраняться в сеансе; аналогично, освобождение блокировки остаётся в силе, даже если транзакция, в которой оно было выполнено, позже прерывается. Вызывающий процесс может запросить блокировку несколько раз; при этом каждому запросу блокировки должен соответствовать запрос освобождения, чтобы она была действительно освобождена. Рекомендательные блокировки на уровне транзакций, напротив, во многом похожи на обычные блокировки: они автоматически освобождаются в конце транзакций и не требуют явного освобождения. Для кратковременного применения блокировок это поведение часто более уместно, чем поведение рекомендательных блокировок на уровне сеанса. Запросы рекомендательных блокировок одного идентификатора на уровне сеанса и на уровне транзакции будут блокировать друг друга вполне предсказуемым образом. Если сеанс уже владеет данной рекомендуемой блокировкой, дополнительные запросы её в том же сеансе будут всегда успешны, даже если её ожидают другие сеансы. Это утверждение справедливо вне зависимости от того, на каком уровне (сеанса или транзакции) установлены или запрашиваются новые блокировки.

Как и остальные блокировки в PostgreSQL, все рекомендательные блокировки, связанные с любыми сеансами, можно просмотреть в системном представлении pg_locks.

И рекомендательные, и обычные блокировки сохраняются в области общей памяти, размер которой определяется параметрами конфигурации max_locks_per_transaction и max_connections. Важно, чтобы этой памяти было достаточно, так как в противном случае сервер не сможет выдать никакую блокировку. Таким образом, число рекомендуемых блокировок, которые может выдать сервер, ограничивается обычно десятками или сотнями тысяч в зависимости от конфигурации сервера.

В определённых случаях при использовании рекомендательных блокировок, особенно в запросах с явными указаниями ORDER BY и LIMIT, важно учитывать, что получаемые блокировки могут зависеть от порядка вычисления SQL-выражений. Например:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- опасно!
SELECT pg_advisory_lock(q.id) FROM
(
  SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- ok

В этом примере второй вариант опасен, так как LIMIT не обязательно будет применяться перед вызовом функции блокировки. В результате приложение может получить блокировки, на которые оно не рассчитывает и которые оно не сможет освободить (до завершения сеанса). С точки зрения приложения такие блокировки окажутся в подвешенном состоянии, хотя они и будут отображаться в pg_locks.

Функции, предназначенные для работы с рекомендательными блокировками, описаны в Подразделе 9.26.10.

45.13. Porting from Oracle PL/SQL

This section explains differences between Postgres Pro's PL/pgSQL language and Oracle's PL/SQL language, to help developers who port applications from Oracle® to Postgres Pro.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and all variables have to be declared. Assignments, loops, and conditionals are similar. The main differences you should keep in mind when porting from PL/SQL to PL/pgSQL are:

  • If a name used in an SQL command could be either a column name of a table used in the command or a reference to a variable of the function, PL/SQL treats it as a column name. By default, PL/pgSQL will throw an error complaining that the name is ambiguous. You can specify plpgsql.variable_conflict = use_column to change this behavior to match PL/SQL, as explained in Section 45.11.1. It's often best to avoid such ambiguities in the first place, but if you have to port a large amount of code that depends on this behavior, setting variable_conflict may be the best solution.

  • In Postgres Pro the function body must be written as a string literal. Therefore you need to use dollar quoting or escape single quotes in the function body. (See Section 45.12.1.)

  • Data type names often need translation. For example, in Oracle string values are commonly declared as being of type varchar2, which is a non-SQL-standard type. In Postgres Pro, use type varchar or text instead. Similarly, replace type number with numeric, or use some other numeric data type if there's a more appropriate one.

  • Instead of packages, use schemas to organize your functions into groups.

  • Since there are no packages, there are no package-level variables either. This is somewhat annoying. You can keep per-session state in temporary tables instead.

  • Integer FOR loops with REVERSE work differently: PL/SQL counts down from the second number to the first, while PL/pgSQL counts down from the first number to the second, requiring the loop bounds to be swapped when porting. This incompatibility is unfortunate but is unlikely to be changed. (See Section 45.6.5.5.)

  • FOR loops over queries (other than cursors) also work differently: the target variable(s) must have been declared, whereas PL/SQL always declares them implicitly. An advantage of this is that the variable values are still accessible after the loop exits.

  • There are various notational differences for the use of cursor variables.

45.13.1. Porting Examples

Example 45.9 shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 45.9. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
                                                  v_version varchar2)
RETURN varchar2 IS
BEGIN
    IF v_version IS NULL THEN
        RETURN v_name;
    END IF;
    RETURN v_name || '/' || v_version;
END;
/
show errors;

Let's go through this function and see the differences compared to PL/pgSQL:

  • The type name varchar2 has to be changed to varchar or text. In the examples in this section, we'll use varchar, but text is often a better choice if you do not need specific string length limits.

  • The RETURN key word in the function prototype (not the function body) becomes RETURNS in Postgres Pro. Also, IS becomes AS, and you need to add a LANGUAGE clause because PL/pgSQL is not the only possible function language.

  • In Postgres Pro, the function body is considered to be a string literal, so you need to use quote marks or dollar quotes around it. This substitutes for the terminating / in the Oracle approach.

  • The show errors command does not exist in Postgres Pro, and is not needed since errors are reported automatically.

This is how this function would look when ported to Postgres Pro:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
                                                  v_version varchar)
RETURNS varchar AS $$
BEGIN
    IF v_version IS NULL THEN
        RETURN v_name;
    END IF;
    RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;


Example 45.10 shows how to port a function that creates another function and how to handle the ensuing quoting problems.

Example 45.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

The following procedure grabs rows from a SELECT statement and builds a large function with the results in IF statements, for the sake of efficiency.

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
    CURSOR referrer_keys IS
        SELECT * FROM cs_referrer_keys
        ORDER BY try_order;
    func_cmd VARCHAR(4000);
BEGIN
    func_cmd := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR2,
                 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN VARCHAR2 IS BEGIN';

    FOR referrer_key IN referrer_keys LOOP
        func_cmd := func_cmd ||
          ' IF v_' || referrer_key.kind
          || ' LIKE ''' || referrer_key.key_string
          || ''' THEN RETURN ''' || referrer_key.referrer_type
          || '''; END IF;';
    END LOOP;

    func_cmd := func_cmd || ' RETURN NULL; END;';

    EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in Postgres Pro:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
    referrer_keys CURSOR IS
        SELECT * FROM cs_referrer_keys
        ORDER BY try_order;
    func_body text;
    func_cmd text;
BEGIN
    func_body := 'BEGIN';

    FOR referrer_key IN referrer_keys LOOP
        func_body := func_body ||
          ' IF v_' || referrer_key.kind
          || ' LIKE ' || quote_literal(referrer_key.key_string)
          || ' THEN RETURN ' || quote_literal(referrer_key.referrer_type)
          || '; END IF;' ;
    END LOOP;

    func_body := func_body || ' RETURN NULL; END;';

    func_cmd :=
      'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,
                                                        v_domain varchar,
                                                        v_url varchar)
        RETURNS varchar AS '
      || quote_literal(func_body)
      || ' LANGUAGE plpgsql;' ;

    EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed through quote_literal to double any quote marks in it. This technique is needed because we cannot safely use dollar quoting for defining the new function: we do not know for sure what strings will be interpolated from the referrer_key.key_string field. (We are assuming here that referrer_key.kind can be trusted to always be host, domain, or url, but referrer_key.key_string might be anything, in particular it might contain dollar signs.) This function is actually an improvement on the Oracle original, because it will not generate broken code when referrer_key.key_string or referrer_key.referrer_type contain quote marks.


Example 45.11 shows how to port a function with OUT parameters and string manipulation. Postgres Pro does not have a built-in instr function, but you can create one using a combination of other functions. In Section 45.13.3 there is a PL/pgSQL implementation of instr that you can use to make your porting easier.

Example 45.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path, and query).

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
    v_url IN VARCHAR2,
    v_host OUT VARCHAR2,  -- This will be passed back
    v_path OUT VARCHAR2,  -- This one too
    v_query OUT VARCHAR2) -- And this one
IS
    a_pos1 INTEGER;
    a_pos2 INTEGER;
BEGIN
    v_host := NULL;
    v_path := NULL;
    v_query := NULL;
    a_pos1 := instr(v_url, '//');

    IF a_pos1 = 0 THEN
        RETURN;
    END IF;
    a_pos2 := instr(v_url, '/', a_pos1 + 2);
    IF a_pos2 = 0 THEN
        v_host := substr(v_url, a_pos1 + 2);
        v_path := '/';
        RETURN;
    END IF;

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
    a_pos1 := instr(v_url, '?', a_pos2 + 1);

    IF a_pos1 = 0 THEN
        v_path := substr(v_url, a_pos2);
        RETURN;
    END IF;

    v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
    v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;

Here is a possible translation into PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_parse_url(
    v_url IN VARCHAR,
    v_host OUT VARCHAR,  -- This will be passed back
    v_path OUT VARCHAR,  -- This one too
    v_query OUT VARCHAR) -- And this one
AS $$
DECLARE
    a_pos1 INTEGER;
    a_pos2 INTEGER;
BEGIN
    v_host := NULL;
    v_path := NULL;
    v_query := NULL;
    a_pos1 := instr(v_url, '//');

    IF a_pos1 = 0 THEN
        RETURN;
    END IF;
    a_pos2 := instr(v_url, '/', a_pos1 + 2);
    IF a_pos2 = 0 THEN
        v_host := substr(v_url, a_pos1 + 2);
        v_path := '/';
        RETURN;
    END IF;

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
    a_pos1 := instr(v_url, '?', a_pos2 + 1);

    IF a_pos1 = 0 THEN
        v_path := substr(v_url, a_pos2);
        RETURN;
    END IF;

    v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
    v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;

This function could be used like this:

SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');


Example 45.12 shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 45.12. Porting a Procedure from PL/SQL to PL/pgSQL

The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
    a_running_job_count INTEGER;
BEGIN
    LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

    SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

    IF a_running_job_count > 0 THEN
        COMMIT; -- free lock
        raise_application_error(-20000,
                 'Unable to create a new job: a job is currently running.');
    END IF;

    DELETE FROM cs_active_job;
    INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

    BEGIN
        INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
    EXCEPTION
        WHEN dup_val_on_index THEN NULL; -- don't worry if it already exists
    END;
    COMMIT;
END;
/
show errors

This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
    a_running_job_count integer;
BEGIN
    LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

    SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

    IF a_running_job_count > 0 THEN
        COMMIT; -- free lock
        RAISE EXCEPTION 'Unable to create a new job: a job is currently running'; -- (1)
    END IF;

    DELETE FROM cs_active_job;
    INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

    BEGIN
        INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
    EXCEPTION
        WHEN unique_violation THEN -- (2)
            -- don't worry if it already exists
    END;
    COMMIT;
END;
$$ LANGUAGE plpgsql;

(1)

The syntax of RAISE is considerably different from Oracle's statement, although the basic case RAISE exception_name works similarly.

(2)

The exception names supported by PL/pgSQL are different from Oracle's. The set of built-in exception names is much larger (see Appendix A). There is not currently a way to declare user-defined exception names, although you can throw user-chosen SQLSTATE values instead.


45.13.2. Other Things to Watch For

This section explains a few other things to watch for when porting Oracle PL/SQL functions to Postgres Pro.

45.13.2.1. Implicit Rollback after Exceptions

In PL/pgSQL, when an exception is caught by an EXCEPTION clause, all database changes since the block's BEGIN are automatically rolled back. That is, the behavior is equivalent to what you'd get in Oracle with:

BEGIN
    SAVEPOINT s1;
    ... code here ...
EXCEPTION
    WHEN ... THEN
        ROLLBACK TO s1;
        ... code here ...
    WHEN ... THEN
        ROLLBACK TO s1;
        ... code here ...
END;

If you are translating an Oracle procedure that uses SAVEPOINT and ROLLBACK TO in this style, your task is easy: just omit the SAVEPOINT and ROLLBACK TO. If you have a procedure that uses SAVEPOINT and ROLLBACK TO in a different way then some actual thought will be required.

45.13.2.2. EXECUTE

The PL/pgSQL version of EXECUTE works similarly to the PL/SQL version, but you have to remember to use quote_literal and quote_ident as described in Section 45.5.4. Constructs of the type EXECUTE 'SELECT * FROM $1'; will not work reliably unless you use these functions.

45.13.2.3. Optimizing PL/pgSQL Functions

Postgres Pro gives you two function creation modifiers to optimize execution: volatility (whether the function always returns the same result when given the same arguments) and strictness (whether the function returns null if any argument is null). Consult the CREATE FUNCTION reference page for details.

When making use of these optimization attributes, your CREATE FUNCTION statement might look something like this:

CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

45.13.3. Appendix

This section contains the code for a set of Oracle-compatible instr functions that you can use to simplify your porting efforts.

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.
--
-- Search string1, beginning at the nth character, for the mth occurrence
-- of string2.  If n is negative, search backwards, starting at the abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is not found.
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
    RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;


CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
                      beg_index integer)
RETURNS integer AS $$
DECLARE
    pos integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    length integer;
    ss_length integer;
BEGIN
    IF beg_index > 0 THEN
        temp_str := substring(string FROM beg_index);
        pos := position(string_to_search_for IN temp_str);

        IF pos = 0 THEN
            RETURN 0;
        ELSE
            RETURN pos + beg_index - 1;
        END IF;
    ELSIF beg_index < 0 THEN
        ss_length := char_length(string_to_search_for);
        length := char_length(string);
        beg := length + 1 + beg_index;

        WHILE beg > 0 LOOP
            temp_str := substring(string FROM beg FOR ss_length);
            IF string_to_search_for = temp_str THEN
                RETURN beg;
            END IF;

            beg := beg - 1;
        END LOOP;

        RETURN 0;
    ELSE
        RETURN 0;
    END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;


CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
                      beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
    pos integer NOT NULL DEFAULT 0;
    occur_number integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    i integer;
    length integer;
    ss_length integer;
BEGIN
    IF occur_index <= 0 THEN
        RAISE 'argument ''%'' is out of range', occur_index
          USING ERRCODE = '22003';
    END IF;

    IF beg_index > 0 THEN
        beg := beg_index - 1;
        FOR i IN 1..occur_index LOOP
            temp_str := substring(string FROM beg + 1);
            pos := position(string_to_search_for IN temp_str);
            IF pos = 0 THEN
                RETURN 0;
            END IF;
            beg := beg + pos;
        END LOOP;

        RETURN beg;
    ELSIF beg_index < 0 THEN
        ss_length := char_length(string_to_search_for);
        length := char_length(string);
        beg := length + 1 + beg_index;

        WHILE beg > 0 LOOP
            temp_str := substring(string FROM beg FOR ss_length);
            IF string_to_search_for = temp_str THEN
                occur_number := occur_number + 1;
                IF occur_number = occur_index THEN
                    RETURN beg;
                END IF;
            END IF;

            beg := beg - 1;
        END LOOP;

        RETURN 0;
    ELSE
        RETURN 0;
    END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;