18.4. Управление ресурсами ядра

Postgres Pro иногда может исчерпывать некоторые ресурсы операционной системы до предела, особенно при запуске нескольких копий сервера в одной системе или при работе с очень большими базами. В этом разделе описываются ресурсы ядра, которые использует Postgres Pro, и подходы к решению проблем, связанных с ограниченностью этих ресурсов.

18.4.1. Разделяемая память и семафоры

Postgres Pro требует, чтобы операционная система предоставляла средства межпроцессного взаимодействия (IPC), в частности, разделяемую память и семафоры. Системы семейства Unix обычно предоставляют функции IPC в стиле «System V» или функции IPC в стиле «POSIX» или и те, и другие. В Windows эти механизмы реализованы по-другому, но здесь это не рассматривается.

Если эти механизмы полностью отсутствуют в системе, при запуске сервера обычно выдаётся ошибка «Illegal system call» (Неверный системный вызов). В этом случае единственный способ решить проблему — переконфигурировать ядро системы. Без них Postgres Pro просто не будет работать. Это довольно редкая ситуация, особенно с современными операционными системами.

При запуске сервера Postgres Pro обычно запрашивает очень небольшой объём разделяемой памяти System V и намного больший объём памяти POSIX (mmap). Помимо этого при запуске создаётся значительное количество семафоров (в стиле System V или POSIX). В настоящее время семафоры POSIX используются в системах Linux и FreeBSD, а на других платформах используются семафоры System V.

Примечание

PostgreSQL до версии 9.3 использовал только разделяемую память System V, поэтому необходимый для запуска сервера объём разделяемой памяти System V был гораздо больше. Если вы используете более раннюю версию сервера, обратитесь к документации по вашей версии.

Функции IPC в стиле System V обычно сталкиваются с лимитами на уровне системы. Когда Postgres Pro превышает один из этих лимитов, сервер отказывается запускаться, но должен выдать полезное сообщение, говорящее об ошибке и о том, что с ней делать. (См. также Подраздел 18.3.1.) Соответствующие параметры ядра в разных системах называются аналогично (они перечислены в Таблице 18.1), но устанавливаются по-разному. Ниже предлагаются способы их изменения для некоторых систем.

Таблица 18.1. Параметры IPC в стиле System V

ИмяОписаниеЗначения, необходимые для запуска одного экземпляра Postgres Pro
SHMMAXМаксимальный размер сегмента разделяемой памяти (в байтах)как минимум 1 КБ, но значение по умолчанию обычно гораздо больше
SHMMINМинимальный размер сегмента разделяемой памяти (в байтах)1
SHMALLОбщий объём доступной разделяемой памяти (в байтах или страницах)если в байтах, то же, что и SHMMAX; если в страницах, то ceil(SHMMAX/PAGE_SIZE), плюс потребность других приложений
SHMSEGМаксимальное число сегментов разделяемой памяти для процессатребуется только 1 сегмент, но значение по умолчанию гораздо больше
SHMMNIМаксимальное число сегментов разделяемой памяти для всей системыкак SHMSEG плюс потребность других приложений
SEMMNIМаксимальное число идентификаторов семафоров (т. е., их наборов)как минимум ceil((max_connections + autovacuum_max_workers + max_worker_processes + 5) / 16) плюс потребность других приложений
SEMMNSМаксимальное число семафоров для всей системыceil((max_connections + autovacuum_max_workers + max_worker_processes + 5) / 16) * 17 плюс потребность других приложений
SEMMSLМаксимальное число семафоров в наборене меньше 17
SEMMAPЧисло записей в карте семафоровсм. текст
SEMVMXМаксимальное значение семафоране меньше 1000 (по умолчанию оно обычно равно 32767; без необходимости менять его не следует)

Postgres Pro запрашивает небольшой блок разделяемой памяти System V (обычно 48 байт на 64-битной платформе) для каждой копии сервера. В большинстве современных операционных систем такой объём выделяется без проблем. Однако, если запускать много копий сервера или разделяемую память System V занимают и другие приложения, может понадобиться увеличить значение SHMALL, задающее общий объём разделяемой памяти System V, доступный для всей системы. Заметьте, что SHMALL во многих системах задаётся в страницах, а не в байтах.

Менее вероятны проблемы с минимальным размером сегментов разделяемой памяти (SHMMIN), который для Postgres Pro не должен превышать примерно 32 байт (обычно это всего 1 байт). Максимальное число сегментов для всей системы (SHMMNI) или для одного процесса (SHMSEG) тоже обычно не влияет на работоспособность сервера, если только это число не равно нулю.

Когда Postgres Pro использует семафоры System V, он занимает по одному семафору на одно разрешённое подключение (max_connections), на разрешённый рабочий процесс автоочистки (autovacuum_max_workers) и фоновый процесс (max_worker_processes), в наборах по 16. В каждом таком наборе есть также 17-ый семафор, содержащий «магическое число», позволяющий обнаруживать коллизии с наборами семафоров других приложений. Максимальное число семафоров в системе задаётся параметром SEMMNS, который, следовательно, должен быть равен как минимум сумме max_connections, autovacuum_max_workers и max_worker_processes, плюс один дополнительный на каждые 16 семафоров подключений и рабочих процессов (см. формулу в Таблице 18.1). Параметр SEMMNI определяет максимальное число наборов семафоров, которые могут существовать в системе в один момент времени. Таким образом, этот параметр должен быть не меньше ceil((max_connections + autovacuum_max_workers + max_worker_processes + 5) / 16). В качестве временного решения проблем, которые вызваны этими ограничениями, но обычно сопровождаются некорректными сообщениями, например, «No space left on device» (На устройстве не осталось места) от функции semget, можно уменьшить число разрешённых соединений

В некоторых случаях может потребоваться увеличить SEMMAP как минимум до уровня SEMMNS. Если в системе есть такой параметр (а во многих системах его нет), он определяет размер карты ресурсов семафоров, в которой выделяется запись для каждого непрерывного блока семафоров. Когда набор семафоров освобождается, эта запись либо добавляется к существующей соседней записи, либо регистрируется как новая запись в карте. Если карта переполняется, освобождаемые семафоры теряются (до перезагрузки). Таким образом, фрагментация пространства семафоров может со временем привести к уменьшению числа доступных семафоров.

Другие параметры, связанные с «аннулированием операций» с семафорами, например, SEMMNU и SEMUME, на работу Postgres Pro не влияют.

При использовании семафоров POSIX требуемое их количество не отличается от количества для System V, то есть по одному семафору на разрешённое подключение (max_connections), на разрешённый рабочий процесс автоочистки (autovacuum_max_workers) и фоновый процесс (max_worker_processes). На платформах, где предпочитается этот вариант, отсутствует определённый лимит ядра на количество семафоров POSIX.

AIX

Как минимум с версии 5.1, для таких параметров, как SHMMAX, никакая дополнительная настройка не должна требоваться, так как система, похоже, позволяет использовать всю память в качестве разделяемой. Подобная конфигурация требуется обычно и для других баз данных, например, для DB/2.

Однако может понадобиться изменить глобальные параметры ulimit в /etc/security/limits, так как стандартные жёсткие ограничения на размер (fsize) и количество файлов (nofiles) могут быть недостаточно большими.

FreeBSD

Значения параметров IPC по умолчанию можно изменить, используя возможности sysctl или loader. С помощью sysctl можно задать следующие параметры:

# sysctl kern.ipc.shmall=32768
# sysctl kern.ipc.shmmax=134217728

Чтобы эти изменения сохранялись после перезагрузки, измените /etc/sysctl.conf.

Эти параметры, связанные с семафорами, sysctl менять не позволяет, но их можно задать в /boot/loader.conf:

kern.ipc.semmni=256
kern.ipc.semmns=512

Чтобы изменённые таким образом параметры вступили в силу, требуется перезагрузить систему.

Возможно, вы захотите настроить ядро так, чтобы разделяемая память всегда находилась в ОЗУ и никогда не выгружалась в пространство подкачки. Это можно сделать, установив с помощью sysctl параметр kern.ipc.shm_use_phys.

Если вы используете «камеры» FreeBSD, включив в sysctl параметр security.jail.sysvipc_allowed, главные процессы postmaster, работающие в разных камерах, должны запускаться разными пользователями операционной системы. Это усиливает защиту, так как не позволяет обычным пользователям обращаться к разделяемой памяти или семафорам в разных камерах, и при этом способствует корректной работе кода очистки IPC в Postgres Pro. (Во FreeBSD 6.0 и более поздних версиях код очистки IPC не может корректно выявить процессы в других камерах, что не позволяет запускать процессы postmaster на одном порту в разных камерах.)

До версии 4.0 система FreeBSD работала так же, как и старая OpenBSD (см. ниже).

NetBSD

В NetBSD, начиная с версии 5.0, параметры IPC можно изменить, воспользовавшись командой sysctl, например:

$ sysctl -w kern.ipc.semmni=100

Чтобы эти параметры сохранялись после перезагрузки, измените /etc/sysctl.conf.

Обычно имеет смысл увеличить kern.ipc.semmni и kern.ipc.semmns, так как их значения по умолчанию в NetBSD слишком малы.

Возможно, вы захотите настроить ядро так, чтобы разделяемая память всегда находилась в ОЗУ и никогда не выгружалась в пространство подкачки. Это можно сделать, установив с помощью sysctl параметр kern.ipc.shm_use_phys.

До версии 5.0 система NetBSD работала так же, как старые OpenBSD (см. ниже), за исключением того, что параметры ядра в этой системе устанавливаются с указанием options, а не option.

OpenBSD

В OpenBSD, начиная с версии 3.3, параметры IPC можно изменить, воспользовавшись командой sysctl, например:

$ sysctl kern.seminfo.semmni=100

Чтобы эти параметры сохранялись после перезагрузки, измените /etc/sysctl.conf.

Обычно имеет смысл увеличить kern.seminfo.semmni и kern.seminfo.semmns, так как их значения по умолчанию в OpenBSD слишком малы.

В старых версиях OpenBSD вам потребуется пересобрать ядро, чтобы изменить параметры IPC. Также убедитесь, что в ядре включены параметры SYSVSHM и SYSVSEM (по умолчанию они включены). Следующие строки показывают, как установить различные параметры в файле конфигурации ядра:

option        SYSVSHM
option        SHMMAXPGS=4096
option        SHMSEG=256

option        SYSVSEM
option        SEMMNI=256
option        SEMMNS=512
option        SEMMNU=256
HP-UX

Значения по умолчанию обычно вполне удовлетворяют средним потребностям. В HP-UX 10 параметр SEMMNS по умолчанию имеет значение 128, что может быть недостаточно для больших баз данных.

Параметры IPC можно установить в менеджере системного администрирования (System Administration Manager, SAM) в разделе Kernel Configuration (Настройка ядра)Configurable Parameters (Настраиваемые параметры). Установив нужные параметры, выполните операцию Create A New Kernel (Создать ядро).

Linux

По умолчанию максимальный размер сегмента равен 32 МБ, а максимальный общий размер составляет 2097152 страниц. Страница почти всегда содержит 4096 байт, за исключением нестандартных конфигураций ядра с поддержкой «огромных страниц» (точно узнать размер страницы можно, выполнив getconf PAGE_SIZE).

Параметры размера разделяемой памяти можно изменить, воспользовавшись командой sysctl. Например, так можно выделить 16 ГБ для разделяемой памяти:

$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304

Чтобы сохранить эти изменения после перезагрузки, их также можно записать в файл /etc/sysctl.conf (это настоятельно рекомендуется).

В некоторых старых дистрибутивах может не оказаться программы sysctl, но те же изменения можно произвести, обратившись к файловой системе /proc:

$ echo 17179869184 >/proc/sys/kernel/shmmax
$ echo 4194304 >/proc/sys/kernel/shmall

Остальные параметры имеют вполне подходящие значения, так что их обычно менять не нужно.

macOS

Для настройки разделяемой памяти в macOS рекомендуется создать файл /etc/sysctl.conf и записать в него присвоения переменных следующим образом:

kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

Заметьте, что в некоторых версиях macOS, все пять параметров разделяемой памяти должны быть установлены в /etc/sysctl.conf, иначе их значения будут проигнорированы.

Имейте в виду, что последние версии macOS игнорируют попытки задать для SHMMAX значение, не кратное 4096.

SHMALL на этой платформе измеряется в страницах (по 4 КБ).

В старых версиях macOS, чтобы изменения параметров разделяемой памяти вступили в силу, требовалась перезагрузка. Начиная с версии 10.5, все параметры, кроме SHMMNI можно изменить «на лету», воспользовавшись командой sysctl. Но, тем не менее, лучше задавать выбранные вами значения в /etc/sysctl.conf, чтобы они сохранялись после перезагрузки.

Файл /etc/sysctl.conf обрабатывается только начиная с macOS версии 10.3.9. Если вы используете предыдущий выпуск 10.3.x, необходимо отредактировать файл /etc/rc и задать значения следующими командами:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

Заметьте, что /etc/rc обычно заменяется при обновлении системы macOS, так что следует ожидать, что вам придётся повторять эти изменения после каждого обновления.

В macOS 10.2 и более ранних версиях вместо этого надо записать эти команды в файле /System/Library/StartupItems/SystemTuning/SystemTuning.

Solaris версии с 2.6 по 2.9 (Solaris 6 .. Solaris 9)

Соответствующие параметры можно изменить в /etc/system, например так:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=256
set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

Чтобы изменения вступили в силу, потребуется перегрузить систему. Информацию о разделяемой памяти в более старых версиях Solaris можно найти по ссылке http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html.

Solaris 2.10 (Solaris 10) и более поздние версии
OpenSolaris

В Solaris 10 и новее, а также в OpenSolaris, стандартные параметры разделяемой памяти и семафоров достаточно хороши для большинства применений Postgres Pro. По умолчанию Solaris теперь устанавливает в SHMMAX четверть объёма ОЗУ. Чтобы изменить этот параметр, воспользуйтесь возможностью задать параметр проекта, связанного с пользователем postgres. Например, выполните от имени root такую команду:

projadd -c "Postgres Pro DB User" -K "project.max-shm-memory=(privileged,8GB,deny)" -U postgres -G postgres user.postgres

Эта команда создаёт проект user.postgres и устанавливает максимальный объём разделяемой памяти для пользователя postgres равным 8 ГБ. Это изменение вступает в силу при следующем входе этого пользователя или при перезапуске Postgres Pro (не перезагрузке конфигурации). При этом подразумевается, что Postgres Pro выполняется пользователем postgres в группе postgres. Перезагружать систему после этой команды не нужно.

Для серверов баз данных, рассчитанных на большое количество подключений, рекомендуется также изменить следующие параметры:

project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

Кроме того, если Postgres Pro у вас выполняется внутри зоны, может понадобиться также увеличить лимиты на использование ресурсов зоны. Получить дополнительную информацию о проектах и команде prctl можно в Руководстве системного администратора (System Administrator's Guide), «Главе 2: Проекты и задачи» (Chapter2: Projects and Tasks).

18.4.2. RemoveIPC в systemd

Если используется systemd, необходимо позаботиться о том, чтобы ресурсы IPC (общая память и семафоры) не освобождались преждевременно операционной системой. Это особенно актуально при сборке и установке Postgres Pro из исходного кода. Пользователей дистрибутивных пакетов Postgres Pro это касается в меньшей степени, так как пользователь postgres обычно создаётся как системный пользователь.

Параметр RemoveIPC в logind.conf определяет, должны ли объекты IPC удаляться при полном выходе пользователя из системы. На системных пользователей это не распространяется. Этот параметр по умолчанию включён в стандартной сборке systemd, но в некоторых дистрибутивах операционных систем он по умолчанию отключён.

Обычно нежелательный эффект этого включённого параметра проявляется в том, что объекты семафоров, используемые сервером Postgres Pro, удаляются без видимых причин, что приводит к отказу сервера с сообщениями вида:

LOG: semctl(1234567890, 0, IPC_RMID, ...) failed: Invalid argument

Различные типы объектов IPC (разделяемая память/семафоры, System V/POSIX) обрабатываются в systemd несколько по-разному, поэтому могут наблюдаться ситуации, когда некоторые ресурсы IPC не удаляются так, как другие. Однако полагаться на эти тонкие различия не рекомендуется.

Событие «выхода пользователя из системы» может произойти при выполнении задачи обслуживания или если администратор войдёт под именем postgres, а затем выйдет, либо случится что-то подобное, так что предотвратить это довольно сложно.

Какой пользователь является «системным», определяется во время компиляции systemd, исходя из значения SYS_UID_MAX в /etc/login.defs.

Скрипт упаковывания и развёртывания сервера должен предусмотрительно создавать пользователя postgres как системного пользователя, используя команды useradd -r, adduser --system или равнозначные.

Если же учётная запись пользователя была создана некорректно и изменить её невозможно, рекомендуется задать

RemoveIPC=no

в /etc/systemd/logind.conf или другом подходящем файле конфигурации.

Внимание

Необходимо предпринять минимум одно из этих двух действий, иначе сервер Postgres Pro будет очень нестабильным.

18.4.3. Ограничения ресурсов

В Unix-подобных операционных системах существуют различные типы ограничений ресурсов, которые могут влиять на работу сервера Postgres Pro. Особенно важны ограничения на число процессов для пользователя, число открытых файлов и объём памяти для каждого процесса. Каждое из этих ограничений имеет «жёсткий» и «мягкий» предел. Мягкий предел действительно ограничивает использование ресурса, но пользователь может увеличить его значение до жёсткого предела. Изменить жёсткий предел может только пользователь root. За изменение этих параметров отвечает системный вызов setrlimit. Управлять этими ресурсами в командной строке позволяет встроенная команда ulimit (в оболочках Bourne) и limit (csh). В системах семейства BSD различными ограничениями ресурсов, устанавливаемыми при входе пользователя, управляет файл /etc/login.conf. За подробностями обратитесь к документации операционной системы. Для Postgres Pro интерес представляют параметры maxproc, openfiles и datasize. Они могут задаваться, например так:

default:\
...
        :datasize-cur=256M:\
        :maxproc-cur=256:\
        :openfiles-cur=256:\
...

(Здесь -cur обозначает мягкий предел. Чтобы задать жёсткий предел, нужно заменить это окончание на -max.)

Ядро также может устанавливать общесистемные ограничения на использование некоторых ресурсов.

  • В Linux максимальное число открытых файлов, которое поддерживает ядро, определяется в спецфайле /proc/sys/fs/file-max. Изменить этот предел можно, записав другое число в этот файл, либо добавив присваивание в файл /etc/sysctl.conf. Максимальное число файлов для одного процесса задаётся при компиляции ядра; за дополнительными сведения обратитесь к /usr/src/linux/Documentation/proc.txt.

Сервер Postgres Pro использует для обслуживания каждого подключения отдельный процесс, так что возможное число процессов должно быть не меньше числа разрешённых соединений плюс число процессов, требуемых для остальной системы. Это обычно не проблема, но когда в одной системе работает множество серверов, предел может быть достигнут.

В качестве максимального числа открытых файлов по умолчанию обычно выбираются «социально-ориентированные» значения, позволяющие использовать одну систему нескольким пользователям так, чтобы ни один из них не потреблял слишком много системных ресурсов. Если вы запускаете в системе несколько серверов, это должно вполне устраивать, но на выделенных машинах может возникнуть желание увеличить этот предел.

С другой стороны, некоторые системы позволяют отдельным процессам открывать очень много файлов и если это делают сразу несколько процессов, они могут легко исчерпать общесистемный предел. Если вы столкнётесь с такой ситуацией, но не захотите менять общесистемное ограничение, вы можете ограничить использование открытых файлов сервером Postgres Pro, установив параметр конфигурации max_files_per_process.

18.4.4. Чрезмерное выделение памяти в Linux

В Linux 2.4 и новее механизм виртуальной памяти по умолчанию работает не оптимально для Postgres Pro. Вследствие того, что ядро выделяет память в чрезмерном объёме, оно может уничтожить главный управляющий процесс Postgres Pro (postmaster), если при выделении памяти процессу Postgres Pro или другому процессу виртуальная память будет исчерпана.

Когда это происходит, вы можете получить примерно такое сообщение ядра (где именно искать это сообщение, можно узнать в документации вашей системы):

Out of Memory: Killed process 12345 (postgres).

Это сообщение говорит о том, что процесс postgres был уничтожен из-за нехватки памяти. Хотя существующие подключения к базе данных будут работать по-прежнему, новые подключения приниматься не будут. Чтобы восстановить работу сервера, Postgres Pro придётся перезапустить.

Один из способов обойти эту проблему — запускать Postgres Pro на компьютере, где никакие другие процессы не займут всю память. Если физической памяти недостаточно, решить проблему также можно, увеличив объём пространства подкачки, так как уничтожение процессов при нехватке памяти происходит только когда заканчивается и физическая память, и место в пространстве подкачки.

Если памяти не хватает по вине самого Postgres Pro, эту проблему можно решить, изменив конфигурацию сервера. В некоторых случаях может помочь уменьшение конфигурационных параметров, связанных с памятью, а именно shared_buffers и work_mem. В других случаях проблема может возникать, потому что разрешено слишком много подключений к самому серверу баз данных. Чаще всего в такой ситуации стоит уменьшить число подключений max_connections и организовать внешний пул соединений.

В Linux 2.6 и новее «чрезмерное выделение» памяти можно предотвратить, изменив поведение ядра. Хотя при этом OOM killer (уничтожение процессов при нехватке памяти) всё равно может вызываться, вероятность такого уничтожения значительно уменьшается, а значит поведение системы становится более стабильным. Для этого нужно включить режим строгого выделения памяти, воспользовавшись sysctl:

sysctl -w vm.overcommit_memory=2

либо поместив соответствующую запись в /etc/sysctl.conf. Возможно, вы также захотите изменить связанный параметр vm.overcommit_ratio. За подробностями обратитесь к документации ядра https://www.kernel.org/doc/Documentation/vm/overcommit-accounting.

Другой подход, который можно применить (возможно, вместе с изменением vm.overcommit_memory), заключается в исключении процесса postmaster из числа возможных жертв при нехватке памяти. Для этого нужно задать для свойства поправка очков OOM этого процесса значение -1000. Проще всего это можно сделать, выполнив

echo -1000 > /proc/self/oom_score_adj

в скрипте запуска управляющего процесса непосредственно перед тем, как запускать postmaster. Заметьте, что делать это надо под именем root, иначе ничего не изменится; поэтому проще всего вставить эту команду в стартовый скрипт, принадлежащий пользователю root. Если вы делаете это, вы также должны установить в данном скрипте эти переменные окружения перед запуском главного процесса:

export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0

С такими параметрами дочерние процессы главного будут запускаться с обычной, нулевой поправкой очков OOM, так что при необходимости механизм OOM сможет уничтожать их. Вы можете задать и другое значение для PG_OOM_ADJUST_VALUE, если хотите, чтобы дочерние процессы исполнялись с другой поправкой OOM. (PG_OOM_ADJUST_VALUE также можно опустить, в этом случае подразумевается нулевое значение.) Если вы не установите PG_OOM_ADJUST_FILE, дочерние процессы будут работать с той же поправкой очков OOM, которая задана для главного процесса, что неразумно, так всё это делается как раз для того, чтобы главный процесс оказался на особом положении.

В старых ядрах Linux /proc/self/oom_score_adj отсутствует, но та же функциональность может быть доступна через /proc/self/oom_adj. Эта переменная процесса работает так же, только значение, исключающее уничтожение процесса, равно -17, а не -1000.

Примечание

Некоторые дистрибутивы с ядрами Linux 2.4 содержат предварительную реализацию механизма sysctl overcommit, появившегося официально в 2.6. Однако, если установить для vm.overcommit_memory значение 2 в ядре 2.4, ситуация не улучшится, а только ухудшится. Прежде чем модифицировать этот параметр в ядре 2.4, рекомендуется проанализировать исходный код вашего ядра (см. функцию vm_enough_memory в файле mm/mmap.c) и убедиться, что ядро поддерживает именно нужный вам режим. Наличие файла документации overcommit-accounting не следует считать признаком того, что он действительно поддерживается. В случае сомнений, обратитесь к эксперту по ядру или поставщику вашей системы.

18.4.5. Огромные страницы в Linux

Использование огромных страниц снижает накладные расходы при работе с большими непрерывными блоками памяти, что характерно для Postgres Pro, особенно при больших значениях shared_buffers. Чтобы можно было использовать эту возможность в Postgres Pro, ядро должно быть собрано с параметрами CONFIG_HUGETLBFS=y и CONFIG_HUGETLB_PAGE=y. Также вам понадобится настроить параметр ядра vm.nr_hugepages. Чтобы оценить требуемое количество огромных страниц, запустите Postgres Pro без поддержки огромных страниц и посмотрите на показатель VmPeak процесса postmaster, а также узнайте размер огромной страницы, воспользовавшись файловой системой /proc. Например, вы можете получить:

$ head -1 $PGDATA/postmaster.pid
4170
$ grep ^VmPeak /proc/4170/status
VmPeak:  6490428 kB
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize:       2048 kB

В данном случае 6490428 / 2048 даёт примерно 3169.154, так что нам потребуется минимум 3170 огромных страниц, и мы можем задать это значение так:

$ sysctl -w vm.nr_hugepages=3170

Большее значение стоит указать, если огромные страницы будут использоваться и другими программами в этой системе. Не забудьте добавить этот параметр в /etc/sysctl.conf, чтобы он действовал и после перезагрузки.

Иногда ядро не может выделить запрошенное количество огромных страниц сразу, поэтому может потребоваться повторить эту команду или перезагрузить систему. (Немедленно после перезагрузки должен быть свободен больший объём памяти для преобразования в огромные страницы.) Чтобы проверить текущую ситуацию с размещением огромных страниц, выполните:

$ grep Huge /proc/meminfo

Также может потребоваться дать пользователю операционной системы, запускающему сервер БД, право использовать огромные страницы, установив его группу в vm.hugetlb_shm_group с помощью sysctl, и/или разрешить блокировать память, выполнив ulimit -l.

По умолчанию Postgres Pro использует огромные страницы, когда считает это возможным, а в противном случае переходит к обычным страницам. Чтобы задействовать огромные страницы принудительно, можно установить для huge_pages значение on в postgresql.conf. Заметьте, что с таким значением Postgres Pro не сможет запуститься, если не получит достаточного количества огромных страниц.

Более подробно о механизме огромных страниц в Linux можно узнать в документации ядра: https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt.

18.4.6. Приоритизация ресурсов

В системах с ограниченными ресурсами и большой нагрузкой может возникнуть необходимость приоритизировать выполнение транзакций, чтобы одни транзакции выполнялись быстрее других. Например, сделать так, чтобы запросы пользователей выполнялись как можно быстрее, даже если при этом будут замедлены менее срочные задачи, например запросы OLAP. Postgres Pro Enterprise даёт возможность настраивать политики приоритизации ресурсов, позволяющие замедлять отдельные сеансы в зависимости от количества потребляемых ими ресурсов процессора и ввода/вывода, по сравнению с другими сеансами.

По умолчанию приоритизация ресурсов отключена, так что все обслуживающие процессы имеют неограниченный доступ ко всем имеющимся ресурсам. Чтобы ограничить объём ресурсов, которые может потреблять каждый сеанс в течение определённого интервала времени, вы можете назначить вес каждому сеансу. В зависимости от текущего потребления ресурсов, Postgres Pro Enterprise может приостанавливать процессы с меньшим весом время от времени, чтобы более приоритетные сеансы получали больше ресурсов.

Чтобы включить приоритизацию ресурсов в кластере баз данных:

  1. Настройте временной интервал для сбора статистики использования ресурсов всеми активными сеансами, воспользовавшись параметром usage_tracking_interval. Например, чтобы установить интервал, равный 20 секундам, выполните:

    ALTER SYSTEM SET usage_tracking_interval = 20;
    SELECT pg_reload_conf();

    Когда параметр usage_tracking_interval имеет положительное значение, Postgres Pro Enterprise начинает собирать статистику использования ресурсов с заданным интервалом.

    Подсказка

    Не следует устанавливать для usage_tracking_interval маленькие значения, так как частый сбор статистики может сказаться на производительности.

  2. Измените значения веса для одного или нескольких клиентов, для приоритизации соответствующих сеансов по ресурсам, которые вы хотите контролировать, используя следующие параметры:

    Возможные значения веса: 1, 2, 4 и 8. Чем больше значение, тем больше ресурсов может использовать сеанс. Сеансы с равным весом имеют одинаковые приоритеты при использовании ресурсов, поэтому если вы назначите всем сеансам какое угодно, но одно и то же значение, это никак не повлияет на производительность. По умолчанию все сеансы имеют вес 4 для всех типов ресурсов.

Когда одному или нескольким сеансам назначен вес, Postgres Pro Enterprise применяет политику приоритизации, зависящую от назначенных весов и статистики использования, которая была собрана в предыдущем интервале (определённом параметром usage_tracking_interval). Таким образом активность сеансов при необходимости регулируется на каждом интервале.

Примечание

Несмотря на то, что веса для каждого ресурса настраиваются отдельно, приоритизация сеанса по какому-то одному ресурсу отражается на общей производительности сеанса и может косвенно повлиять на использование других ресурсов.