CREATE FOREIGN DATA WRAPPER
CREATE FOREIGN DATA WRAPPER — создать новую обёртку сторонних данных
Синтаксис
CREATE FOREIGN DATA WRAPPERимя
[ HANDLERфункция_обработчик
| NO HANDLER ] [ VALIDATORфункция_проверки
| NO VALIDATOR ] [ OPTIONS (параметр
'значение
' [, ... ] ) ]
Описание
CREATE FOREIGN DATA WRAPPER
создаёт обёртку сторонних данных. Владельцем обёртки становится создавший её пользователь.
Имя обёртки сторонних данных должно быть уникальным в базе данных.
Создавать обёртки сторонних данных могут только суперпользователи.
Параметры
имя
Имя создаваемой обёртки сторонних данных.
HANDLER
функция_обработчик
В аргументе
функция_обработчик
указывается имя ранее зарегистрированной функции, которая будет вызываться для получения функций, реализующих обращения к сторонним таблицам. Функция-обработчик не принимает аргументы и возвращает результат типаfdw_handler
.Обёртку сторонних таблиц можно создать и без функции-обработчика, но через такую обёртку нельзя будет использовать сторонние таблицы, хотя объявить их вполне возможно.
VALIDATOR
функция_проверки
В аргументе
функция_проверки
указывается имя ранее зарегистрированной функции, которая будет вызываться для проверки общих параметров, передаваемых обёртке сторонних данных, а также параметров сторонних серверов, сопоставлений пользователей и сторонних таблиц, доступных через эту обёртку. Если функция проверки не задана или указаноNO VALIDATOR
, параметры не будут проверяться во время создания объектов. (Обёртка сторонних данных может игнорировать или не принимать неверные указания параметров во время выполнения, в зависимости от реализации.) Функция проверки должна принимать два аргумента: первый типаtext[]
(в нём содержится массив параметров, хранящихся в системном каталоге), а второй типаoid
(в нём указывается OID системного каталога с этими параметрами). Возвращаемое значение игнорируется; функция проверки должна сообщать о неверных параметрах, вызывая системную функциюereport(ERROR)
.OPTIONS (
параметр
'значение
' [, ... ] )Это предложение определяет параметры для создаваемой обёртки сторонних данных. Набор допустимых параметров и значений для каждой обёртки свой, контроль их правильности осуществляет функция проверки сторонних данных. Имена параметров должны быть уникальными.
Примечания
Функциональность Postgres Pro по работе со сторонними данными продолжает активно развиваться. На данный момент выполняется только примитивная оптимизация запросов (и по большей части это тоже делает обёртка), так что в этом направлении есть поле для улучшения производительности.
Примеры
Создание бесполезной обёртки сторонних данных dummy
:
CREATE FOREIGN DATA WRAPPER dummy;
Создание обёртки сторонних данных file
с функцией-обработчиком file_fdw_handler
:
CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;
Создание обёртки сторонних данных mywrapper
с параметрами:
CREATE FOREIGN DATA WRAPPER mywrapper OPTIONS (debug 'true');
Совместимость
CREATE FOREIGN DATA WRAPPER
соответствует стандарту ISO/IEC 9075-9 (SQL/MED), за исключением того, что предложения HANDLER
и VALIDATOR
стандартом не предусмотрены, а предложения LIBRARY
и LANGUAGE
, напротив, не реализованы в Postgres Pro.
Учтите, однако, что функциональность SQL/MED в целом ещё не обеспечивается.
51.74. pg_locks
The view pg_locks
provides access to information about the locks held by active processes within the database server. See Chapter 13 for more discussion of locking.
pg_locks
contains one row per active lockable object, requested lock mode, and relevant process. Thus, the same lockable object might appear many times, if multiple processes are holding or waiting for locks on it. However, an object that currently has no locks on it will not appear at all.
There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general database objects (identified by class OID and object OID, in the same way as in pg_description
or pg_depend
). Also, the right to extend a relation is represented as a separate lockable object, as is the right to update pg_database
.datfrozenxid
. Also, “advisory” locks can be taken on numbers that have user-defined meanings.
Table 51.75. pg_locks
Columns
Name | Type | References | Description |
---|---|---|---|
locktype | text | Type of the lockable object: relation , extend , frozenid , page , tuple , transactionid , virtualxid , object , userlock , or advisory | |
database | oid |
| OID of the database in which the lock target exists, or zero if the target is a shared object, or null if the target is a transaction ID |
relation | oid |
| OID of the relation targeted by the lock, or null if the target is not a relation or part of a relation |
page | integer | Page number targeted by the lock within the relation, or null if the target is not a relation page or tuple | |
tuple | smallint | Tuple number targeted by the lock within the page, or null if the target is not a tuple | |
virtualxid | text | Virtual ID of the transaction targeted by the lock, or null if the target is not a virtual transaction ID | |
transactionid | xid | ID of the transaction targeted by the lock, or null if the target is not a transaction ID | |
classid | oid |
| OID of the system catalog containing the lock target, or null if the target is not a general database object |
objid | oid | any OID column | OID of the lock target within its system catalog, or null if the target is not a general database object |
objsubid | smallint | Column number targeted by the lock (the classid and objid refer to the table itself), or zero if the target is some other general database object, or null if the target is not a general database object | |
virtualtransaction | text | Virtual ID of the transaction that is holding or awaiting this lock | |
pid | integer | Process ID of the server process holding or awaiting this lock, or null if the lock is held by a prepared transaction | |
mode | text | Name of the lock mode held or desired by this process (see Section 13.3.1 and Section 13.2.3) | |
granted | boolean | True if lock is held, false if lock is awaited | |
fastpath | boolean | True if lock was taken via fast path, false if taken via main lock table |
granted
is true in a row representing a lock held by the indicated process. False indicates that this process is currently waiting to acquire this lock, which implies that at least one other process is holding or waiting for a conflicting lock mode on the same lockable object. The waiting process will sleep until the other lock is released (or a deadlock situation is detected). A single process can be waiting to acquire at most one lock at a time.
Throughout running a transaction, a server process holds an exclusive lock on the transaction's virtual transaction ID. If a permanent ID is assigned to the transaction (which normally happens only if the transaction changes the state of the database), it also holds an exclusive lock on the transaction's permanent transaction ID until it ends. When a process finds it necessary to wait specifically for another transaction to end, it does so by attempting to acquire share lock on the other transaction's ID (either virtual or permanent ID depending on the situation). That will succeed only when the other transaction terminates and releases its locks.
Although tuples are a lockable type of object, information about row-level locks is stored on disk, not in memory, and therefore row-level locks normally do not appear in this view. If a process is waiting for a row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the current holder of that row lock.
Advisory locks can be acquired on keys consisting of either a single bigint
value or two integer values. A bigint
key is displayed with its high-order half in the classid
column, its low-order half in the objid
column, and objsubid
equal to 1. The original bigint
value can be reassembled with the expression (classid::bigint << 32) | objid::bigint
. Integer keys are displayed with the first key in the classid
column, the second key in the objid
column, and objsubid
equal to 2. The actual meaning of the keys is up to the user. Advisory locks are local to each database, so the database
column is meaningful for an advisory lock.
pg_locks
provides a global view of all locks in the database cluster, not only those relevant to the current database. Although its relation
column can be joined against pg_class
.oid
to identify locked relations, this will only work correctly for relations in the current database (those for which the database
column is either the current database's OID or zero).
The pid
column can be joined to the pid
column of the pg_stat_activity
view to get more information on the session holding or awaiting each lock, for example
SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa ON pl.pid = psa.pid;
Also, if you are using prepared transactions, the virtualtransaction
column can be joined to the transaction
column of the pg_prepared_xacts
view to get more information on prepared transactions that hold locks. (A prepared transaction can never be waiting for a lock, but it continues to hold the locks it acquired while running.) For example:
SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx ON pl.virtualtransaction = '-1/' || ppx.transaction;
While it is possible to obtain information about which processes block which other processes by joining pg_locks
against itself, this is very difficult to get right in detail. Such a query would have to encode knowledge about which lock modes conflict with which others. Worse, the pg_locks
view does not expose information about which processes are ahead of which others in lock wait queues, nor information about which processes are parallel workers running on behalf of which other client sessions. It is better to use the pg_blocking_pids()
function (see Table 9.63) to identify which process(es) a waiting process is blocked behind.
The pg_locks
view displays data from both the regular lock manager and the predicate lock manager, which are separate systems; in addition, the regular lock manager subdivides its locks into regular and fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on fast-path locks (with fastpath
= true
) is gathered from each backend one at a time, without freezing the state of the entire lock manager, so it is possible for locks to be taken or released while information is gathered. Note, however, that these locks are known not to conflict with any other lock currently in place. After all backends have been queried for fast-path locks, the remainder of the regular lock manager is locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic action. After unlocking the regular lock manager, the predicate lock manager is similarly locked and all predicate locks are collected as an atomic action. Thus, with the exception of fast-path locks, each lock manager will deliver a consistent set of results, but as we do not lock both lock managers simultaneously, it is possible for locks to be taken or released after we interrogate the regular lock manager and before we interrogate the predicate lock manager.
Locking the regular and/or predicate lock manager could have some impact on database performance if this view is very frequently accessed. The locks are held only for the minimum amount of time necessary to obtain data from the lock managers, but this does not completely eliminate the possibility of a performance impact.