F.19. hstore
Этот модуль реализует тип данных hstore
для хранения пар ключ-значение внутри одного значения Postgres Pro. Это может быть полезно в самых разных сценариях, например для хранения строк со множеством редко анализируемых атрибутов или частично структурированных данных. Ключи и значения задаются простыми текстовыми строками.
F.19.1. Внешнее представление hstore
Текстовое представление типа hstore
, применяемое для ввода и вывода, включает ноль или более пар ключ
=>
значение
, разделённых запятыми. Несколько примеров:
k => v foo => bar, baz => whatever "1-a" => "anything at all"
Порядок пар не имеет значения (и может не воспроизводиться при выводе). Пробелы между парами и вокруг знака =>
игнорируются. Ключи и значения, содержащие пробелы, запятые и знаки =
или >
, нужно заключать в двойные кавычки. Если в ключ или значение нужно вставить символ кавычек или обратную косую черту, добавьте перед ним обратную косую черту.
Все ключи в hstore
уникальны. Если вы объявите тип hstore
с дублирующимися ключами, в hstore
будет сохранён только один ключ без гарантии определённого выбора:
SELECT 'a=>1,a=>2'::hstore; hstore ---------- "a"=>"1"
В качестве значения (но не ключа) может задаваться SQL NULL
. Например:
key => NULL
В ключевом слове NULL
регистр не имеет значения. Если требуется, чтобы текст NULL
воспринимался как обычная строка «NULL», заключите его в кавычки.
Примечание
Учтите, что когда текстовый формат hstore
используется для ввода данных, он применяется до обработки кавычек или спецсимволов. Таким образом, если значение hstore
передаётся в параметре, дополнительная обработка не требуется. Но если вы передаёте его в виде строковой константы, то все символы апострофов и (в зависимости от параметра конфигурации standard_conforming_strings
) обратной косой черты нужно корректно экранировать. Подробнее о записи строковых констант можно узнать в Подразделе 4.1.2.1.
При выводе значения и ключи всегда заключаются в кавычки, даже когда без этого можно обойтись.
F.19.2. Операторы и функции hstore
Реализованные в модуле hstore
операторы перечислены в Таблице F.7, функции — в Таблице F.8.
Таблица F.7. Операторы hstore
Оператор | Описание | Пример | Результат |
---|---|---|---|
hstore -> text | выдаёт значение для ключа (или NULL при его отсутствии) | 'a=>x, b=>y'::hstore -> 'a' | x |
hstore -> text[] | выдаёт значения для ключей (или NULL при их отсутствии) | 'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a'] | {"z","x"} |
hstore || hstore | объединяет два набора hstore | 'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore | "a"=>"b", "c"=>"x", "d"=>"q" |
hstore ? text | набор hstore включает ключ? | 'a=>1'::hstore ? 'a' | t |
hstore ?& text[] | набор hstore включает все указанные ключи? | 'a=>1,b=>2'::hstore ?& ARRAY['a','b'] | t |
hstore ?| text[] | набор hstore включает какой-либо из указанных ключей? | 'a=>1,b=>2'::hstore ?| ARRAY['b','c'] | t |
hstore @> hstore | левый операнд включает правый? | 'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1' | t |
hstore <@ hstore | левый операнд включён в правый? | 'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL' | f |
hstore - text | удаляет ключ из левого операнда | 'a=>1, b=>2, c=>3'::hstore - 'b'::text | "a"=>"1", "c"=>"3" |
hstore - text[] | удаляет ключи из левого операнда | 'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b'] | "c"=>"3" |
hstore - hstore | удаляет соответствующие пары из левого операнда | 'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore | "a"=>"1", "c"=>"3" |
record #= hstore | заменяет поля в record соответствующими значениями из hstore | см. раздел Примеры | |
%% hstore | преобразует hstore в массив перемежающихся ключей и значений | %% 'a=>foo, b=>bar'::hstore | {a,foo,b,bar} |
%# hstore | преобразует hstore в двумерный массив ключей-значений | %# 'a=>foo, b=>bar'::hstore | {{a,foo},{b,bar}} |
Примечание
До версии PostgreSQL 8.2 операторы включения @>
и <@
обозначались соответственно как @
и ~
. Эти имена по-прежнему действуют, но считаются устаревшими и в конце концов будут упразднены. Заметьте, что старые имена произошли из соглашения, которому раньше следовали геометрические типы данных!
Таблица F.8. Функции hstore
Примечание
Функция hstore_to_json
применяется, когда значение hstore
нужно привести к json
. Подобным образом, hstore_to_jsonb
применяется, когда значение hstore
нужно привести к jsonb
.
Примечание
Функция populate_record
на самом деле объявлена как принимающая в первом аргументе anyelement
, а не record
, но если ей будет передан не тип записи, она выдаст ошибку.
F.19.3. Индексы
Тип hstore
поддерживает индексы GiST и GIN для операторов @>
, ?
, ?&
и ?|
. Например:
CREATE INDEX hidx ON testhstore USING GIST (h); CREATE INDEX hidx ON testhstore USING GIN (h);
Тип hstore
также поддерживает индексы btree
и hash
для оператора =
. Это позволяет объявлять столбцы hstore
как уникальные (UNIQUE
) и использовать их в выражениях GROUP BY
, ORDER BY
или DISTINCT
. Порядок сортировки значений hstore
не имеет практического смысла, но эти индексы могут быть полезны для поиска по равенству. Индексы для сравнений (с помощью =
) можно создать так:
CREATE INDEX hidx ON testhstore USING BTREE (h); CREATE INDEX hidx ON testhstore USING HASH (h);
F.19.4. Примеры
Добавление ключа или изменение значения для существующего ключа:
UPDATE tab SET h = h || hstore('c', '3');
Удаление ключа:
UPDATE tab SET h = delete(h, 'k1');
Приведение типа record
к типу hstore
:
CREATE TABLE test (col1 integer, col2 text, col3 text); INSERT INTO test VALUES (123, 'foo', 'bar'); SELECT hstore(t) FROM test AS t; hstore --------------------------------------------- "col1"=>"123", "col2"=>"foo", "col3"=>"bar" (1 row)
Приведение типа hstore
к предопределённому типу record
:
CREATE TABLE test (col1 integer, col2 text, col3 text); SELECT * FROM populate_record(null::test, '"col1"=>"456", "col2"=>"zzz"'); col1 | col2 | col3 ------+------+------ 456 | zzz | (1 row)
Изменение существующей записи по данным из hstore
:
CREATE TABLE test (col1 integer, col2 text, col3 text); INSERT INTO test VALUES (123, 'foo', 'bar'); SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s; col1 | col2 | col3 ------+------+------ 123 | foo | baz (1 row)
F.19.5. Статистика
Тип hstore
, вследствие присущей ему либеральности, может содержать множество самых разных ключей. Контроль допустимости ключей является задачей приложения. Следующие примеры демонстрируют несколько приёмов проверки ключей и получения статистики.
Простой пример:
SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');
С таблицей:
SELECT (each(h)).key, (each(h)).value INTO stat FROM testhstore;
Актуальная статистика:
SELECT key, count(*) FROM (SELECT (each(h)).key FROM testhstore) AS stat GROUP BY key ORDER BY count DESC, key; key | count -----------+------- line | 883 query | 207 pos | 203 node | 202 space | 197 status | 195 public | 194 title | 190 org | 189 ...................
F.19.6. Совместимость
Начиная с PostgreSQL 9.0, hstore
использует внутреннее представление, отличающееся от предыдущих версий. Это не проблема при обновлении путём выгрузки/перезагрузки данных, так как текстовое представление (используемое при выгрузке) не меняется.
В случае двоичного обновления обратная совместимость поддерживается благодаря тому, что новый код понимает данные в старом формате. При таком обновлении возможно небольшое снижение производительности при обработке данных, которые ещё не были изменены новым кодом. Все значения в столбце таблицы можно обновить принудительно, выполнив следующий оператор UPDATE
:
UPDATE tablename SET hstorecol = hstorecol || '';
Это можно сделать и так:
ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';
Вариант с командой ALTER TABLE
требует блокировки таблицы в режиме ACCESS EXCLUSIVE
, но не приводит к раздуванию таблицы из-за старых версий строк.
F.19.7. Трансформации
Также имеются дополнительные расширения, реализующие трансформации типа hstore
для языков PL/Perl и PL/Python. Расширения для PL/Perl называются hstore_plperl
и hstore_plperlu
для доверенного и недоверенного PL/Perl, соответственно. Если вы установите эти трансформации и укажете их при создании функции, значения hstore
будут отображаться в хеши Perl. Расширения для PL/Python называются hstore_plpythonu
, hstore_plpython2u
и hstore_plpython3u
(соглашения об именовании, принятые для интерфейса PL/Python, описаны в Разделе 44.1). Если вы воспользуетесь ими, значения hstore
будут отображаться в словари Python.
Внимание
Расширения, реализующие трансформации, настоятельно рекомендуется устанавливать в одну схему с hstore
. Выбор какой-либо другой схемы, которая может содержать объекты, созданные злонамеренным пользователем, чреват угрозами безопасности во время установки расширения.
F.19.8. Авторы
Олег Бартунов <oleg@sai.msu.su>
, Москва, Московский Государственный Университет, Россия
Фёдор Сигаев <teodor@sigaev.ru>
, Москва, ООО «Дельта-Софт», Россия
Дополнительные улучшения внёс Эндрю Гирт <andrew@tao11.riddles.org.uk>
, Великобритания
9.19. Array Functions and Operators #
Table 9.54 shows the specialized operators available for array types. In addition to those, the usual comparison operators shown in Table 9.1 are available for arrays. The comparison operators compare the array contents element-by-element, using the default B-tree comparison function for the element data type, and sort based on the first difference. In multidimensional arrays the elements are visited in row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality is different, the first difference in the dimensionality information determines the sort order.
Table 9.54. Array Operators
Operator Description Example(s) |
---|
Does the first array contain the second, that is, does each element appearing in the second array equal some element of the first array? (Duplicates are not treated specially, thus
|
Is the first array contained by the second?
|
Do the arrays overlap, that is, have any elements in common?
|
Concatenates the two arrays. Concatenating a null or empty array is a no-op; otherwise the arrays must have the same number of dimensions (as illustrated by the first example) or differ in number of dimensions by one (as illustrated by the second). If the arrays are not of identical element types, they will be coerced to a common type (see Section 10.5).
|
Concatenates an element onto the front of an array (which must be empty or one-dimensional).
|
Concatenates an element onto the end of an array (which must be empty or one-dimensional).
|
See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about which operators support indexed operations.
Table 9.55 shows the functions available for use with array types. See Section 8.15 for more information and examples of the use of these functions.
Table 9.55. Array Functions
Function Description Example(s) |
---|
Appends an element to the end of an array (same as the
|
Concatenates two arrays (same as the
|
Returns a text representation of the array's dimensions.
|
Returns an array filled with copies of the given value, having dimensions of the lengths specified by the second argument. The optional third argument supplies lower-bound values for each dimension (which default to all
|
Returns the length of the requested array dimension. (Produces NULL instead of 0 for empty or missing array dimensions.)
|
Returns the lower bound of the requested array dimension.
|
Returns the number of dimensions of the array.
|
Returns the subscript of the first occurrence of the second argument in the array, or
|
Returns an array of the subscripts of all occurrences of the second argument in the array given as first argument. The array must be one-dimensional. Comparisons are done using
|
Prepends an element to the beginning of an array (same as the
|
Removes all elements equal to the given value from the array. The array must be one-dimensional. Comparisons are done using
|
Replaces each array element equal to the second argument with the third argument.
|
Returns an array of
|
Randomly shuffles the first dimension of the array.
|
Converts each array element to its text representation, and concatenates those separated by the
|
Returns the upper bound of the requested array dimension.
|
Returns the total number of elements in the array, or 0 if the array is empty.
|
Trims an array by removing the last
|
Expands an array into a set of rows. The array's elements are read out in storage order.
1 2
foo bar baz quux |
Expands multiple arrays (possibly of different data types) into a set of rows. If the arrays are not all the same length then the shorter ones are padded with
a | b ---+----- 1 | foo 2 | bar | baz |
See also Section 9.21 about the aggregate function array_agg
for use with arrays.