F.6. bloom

Модуль bloom предоставляет метод доступа индекса, основанный на фильтрах Блума.

Фильтр Блума представляет собой компактную структуру данных, позволяющую проверить, является ли элемент членом множества. В виде метода доступа индекса он позволяет быстро исключать неподходящие кортежи по сигнатурам, размер которых определяется при создании индекса.

Сигнатура — это неточное представление проиндексированных атрибутов, вследствие чего оно допускает ложные положительные срабатывания; то есть оно может показывать, что элемент содержится в множестве, хотя это не так. Поэтому результаты поиска по такому индексу должны всегда перепроверяться по фактическим значениям атрибутов записи в таблице. Чем больше размер сигнатуры, тем меньше вероятность ложного срабатывания и число напрасных обращений к таблице, но это, разумеется, влечёт увеличение индекса и замедление сканирования.

Этот тип индекса наиболее полезен, когда в таблице много атрибутов и в запросах проверяются их произвольные сочетания. Традиционный индекс-B-дерево быстрее индекса Блума, но для поддержки всевозможных запросов может потребоваться множество индексов типа B-дерево, при том что индекс Блума нужен всего один. Заметьте, однако, что индексы Блума поддерживают только проверки на равенство, тогда как индексы-B-деревья также полезны при проверке неравенств и поиске в диапазоне.

F.6.1. Параметры

Индекс bloom принимает в своём предложении WITH следующие параметры:

length

Длина каждой сигнатуры (элемента индекса) в битах, округлённая вверх до ближайшего числа, кратного 16. Значение по умолчанию — 80, а максимальное значение — 4096.

col1 — col32

Число битов, генерируемых для каждого столбца индекса. В имени параметра отражается номер столбца индекса, для которого это число задаётся. Значение по умолчанию — 2 бита, а максимум — 4095. Параметры для неиспользуемых столбцов индекса игнорируются.

F.6.2. Примеры

Пример создания индекса bloom:

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
       WITH (length=80, col1=2, col2=2, col3=4);

Эта команда создаёт индекс с длиной сигнатуры 80 бит, в которой атрибуты i1 и i2 отображаются в 2 бита, а атрибут i3 — в 4. Мы могли бы опустить указания length, col1 и col2, так как в них задаются значения по умолчанию.

Ниже представлен более полный пример определения и использования индекса Блума, а также приводится сравнение его с равнозначным индексом-B-деревом. Видно, что индекс Блума значительно меньше индекса-B-дерева, и при этом он может работать быстрее.

=# CREATE TABLE tbloom AS
   SELECT
     (random() * 1000000)::int as i1,
     (random() * 1000000)::int as i2,
     (random() * 1000000)::int as i3,
     (random() * 1000000)::int as i4,
     (random() * 1000000)::int as i5,
     (random() * 1000000)::int as i6
   FROM
  generate_series(1,10000000);
SELECT 10000000
=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty
----------------
 153 MB
(1 row)
=# CREATE index btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty
----------------
 387 MB
(1 row)

Последовательное сканирование по этой большой таблице выполняется долго:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                 QUERY PLAN
------------------------------------------------------------------------------------------------------------
 Seq Scan on tbloom  (cost=0.00..213694.08 rows=1 width=24) (actual time=1445.438..1445.438 rows=0 loops=1)
   Filter: ((i2 = 898732) AND (i5 = 123451))
   Rows Removed by Filter: 10000000
 Planning time: 0.177 ms
 Execution time: 1445.473 ms
(5 rows)

Поэтому планировщик обычно предпочтёт сканирование по индексу, если это возможно. Индекс-B-дерево даёт такие результаты:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                           QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
 Index Only Scan using btreeidx on tbloom  (cost=0.56..298311.96 rows=1 width=24) (actual time=445.709..445.709 rows=0 loops=1)
   Index Cond: ((i2 = 898732) AND (i5 = 123451))
   Heap Fetches: 0
 Planning time: 0.193 ms
 Execution time: 445.770 ms
(5 rows)

При таком поиске Блум оказывается лучше B-дерева:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                        QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on tbloom  (cost=178435.39..178439.41 rows=1 width=24) (actual time=76.698..76.698 rows=0 loops=1)
   Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
   Rows Removed by Index Recheck: 2439
   Heap Blocks: exact=2408
   ->  Bitmap Index Scan on bloomidx  (cost=0.00..178435.39 rows=1 width=0) (actual time=72.455..72.455 rows=2439 loops=1)
         Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Planning time: 0.475 ms
 Execution time: 76.778 ms
(8 rows)

Обратите внимание на относительно большое количество ложных срабатываний: для перепроверки по куче были отобраны 2439 строк, но на самом деле ни одна из них не удовлетворила запросу. Мы можем уменьшить это количество, создав сигнатуру большей длины. В данном примере при создании индекса с length=200 число ложных срабатываний уменьшилось до 55, но размер индекса удвоился (до 306 Мбайт) и запрос стал выполняться дольше (125 мс).

При таком подходе основная проблема поиска по B-дереву состоит в том, что B-дерево неэффективно, когда условия поиска не ограничивают ведущие столбцы индекса. Поэтому, применяя индексы типа B-дерево, лучше создавать отдельные индексы для каждого столбца. В этом случае планировщик построит примерно такой план:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                          QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on tbloom  (cost=9.29..13.30 rows=1 width=24) (actual time=0.148..0.148 rows=0 loops=1)
   Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
   ->  BitmapAnd  (cost=9.29..9.29 rows=1 width=0) (actual time=0.145..0.145 rows=0 loops=1)
         ->  Bitmap Index Scan on tbloom_i5_idx  (cost=0.00..4.52 rows=11 width=0) (actual time=0.089..0.089 rows=10 loops=1)
               Index Cond: (i5 = 123451)
         ->  Bitmap Index Scan on tbloom_i2_idx  (cost=0.00..4.52 rows=11 width=0) (actual time=0.048..0.048 rows=8 loops=1)
               Index Cond: (i2 = 898732)
 Planning time: 2.049 ms
 Execution time: 0.280 ms
(9 rows)

Хотя этот запрос выполняется гораздо быстрее, чем с каким-либо одиночным индексом, мы платим за это увеличением размера индекса. Каждый индекс-B-дерево занимает 214 Мбайт, так что общий объём индексов превышает 1.2 Гбайта, что в 8 раз больше размера индекса Блума.

F.6.3. Интерфейс класса операторов

Класс операторов для индексов Блума требует наличия только хеш-функции для индексируемого типа данных и оператора равенства для поиска. Этот пример демонстрирует соответствующее определение класса операторов для типа text:

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
    OPERATOR    1   =(text, text),
    FUNCTION    1   hashtext(text);

F.6.4. Ограничения

  • В этот модуль включены только классы операторов для int4 и text.

  • При поиске поддерживается только оператор =. Но в будущем возможно добавление поддержки для массивов с операциями объединения и пересечения.

  • Метод доступа bloom не поддерживает уникальные индексы (UNIQUE).

  • Метод доступа bloom не поддерживает поиск значений NULL.

F.6.5. Авторы

Фёдор Сигаев , Postgres Professional, Москва, Россия

Александр Коротков , Postgres Professional, Москва, Россия

Олег Бартунов , Postgres Professional, Москва, Россия