40.2. Система правил и представления

Представления в Postgres Pro реализованы на основе системы правил. Фактически по сути нет никакого отличия

CREATE VIEW myview AS SELECT * FROM mytab;

от следующих двух команд:

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
    SELECT * FROM mytab;

так как именно эти действия CREATE VIEW выполняет внутри. Это имеет некоторые побочные эффекты. В частности, информация о представлениях в системных каталогах Postgres Pro ничем не отличается от информации о таблицах. Поэтому при анализе запроса нет абсолютно никакой разницы между таблицами и представлениями. Они представляют собой одно и то же — отношения.

40.2.1. Как работают правила SELECT

Правила ON SELECT применяются ко всем запросам на последнем этапе, даже если это команда INSERT, UPDATE или DELETE. Эти правила отличаются от правил других видов тем, что они модифицируют непосредственно дерево запросов, а не создают новое. Поэтому мы начнём описание с правил SELECT.

В настоящее время возможно только одно действие в правиле ON SELECT и это должно быть безусловное действие SELECT, выполняемое в режиме INSTEAD. Это ограничение было введено, чтобы сделать правила достаточно безопасными для применения обычными пользователями, так что действие правил ON SELECT сводится к реализации представлений.

В примерах этой главы рассматриваются два представления с соединением, которые выполняют некоторые вычисления, и которые, в свою очередь, используются другими представлениями. Первое из этих двух представлений затем модифицируется, к нему добавляются правила для операций INSERT, UPDATE и DELETE, так что в итоге получается представление, которое работает как обычная таблица с некоторыми необычными функциями. Это не самый простой пример для начала, поэтому понять некоторые вещи будет сложнее. Но лучше иметь один пример, поэтапно охватывающий все обсуждаемые здесь темы, чем несколько различных, при восприятии которых в итоге может возникнуть путаница.

Таблицы, которые понадобятся нам для описания системы правил, выглядят так:

CREATE TABLE shoe_data (
    shoename   text,          -- первичный ключ
    sh_avail   integer,       -- число имеющихся пар
    slcolor    text,          -- предпочитаемый цвет шнурков
    slminlen   real,          -- минимальная длина шнурков
    slmaxlen   real,          -- максимальная длина шнурков
    slunit     text           -- единица длины
);

CREATE TABLE shoelace_data (
    sl_name    text,          -- первичный ключ
    sl_avail   integer,       -- число имеющихся пар
    sl_color   text,          -- цвет шнурков
    sl_len     real,          -- длина шнурков
    sl_unit    text           -- единица длины
);

CREATE TABLE unit (
    un_name    text,          -- первичный ключ
    un_fact    real           -- коэффициент для перевода в см
);

Как можно догадаться, в них хранятся данные обувной фабрики.

Представления создаются так:

CREATE VIEW shoe AS
    SELECT sh.shoename,
           sh.sh_avail,
           sh.slcolor,
           sh.slminlen,
           sh.slminlen * un.un_fact AS slminlen_cm,
           sh.slmaxlen,
           sh.slmaxlen * un.un_fact AS slmaxlen_cm,
           sh.slunit
      FROM shoe_data sh, unit un
     WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
    SELECT s.sl_name,
           s.sl_avail,
           s.sl_color,
           s.sl_len,
           s.sl_unit,
           s.sl_len * u.un_fact AS sl_len_cm
      FROM shoelace_data s, unit u
     WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
    SELECT rsh.shoename,
           rsh.sh_avail,
           rsl.sl_name,
           rsl.sl_avail,
           least(rsh.sh_avail, rsl.sl_avail) AS total_avail
      FROM shoe rsh, shoelace rsl
     WHERE rsl.sl_color = rsh.slcolor
       AND rsl.sl_len_cm >= rsh.slminlen_cm
       AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

Команда CREATE VIEW для представления shoelace (самого простого из имеющихся) создаёт отношение shoelace и запись в pg_rewrite о правиле перезаписи, которое должно применяться, когда в запросе на выборку задействуется отношение shoelace. Для этого правила не задаются условия применения (о них рассказывается ниже, в описании правил не для SELECT, так как правила SELECT в настоящее бывают только безусловными) и оно действует в режиме INSTEAD. Заметьте, что условия применения отличаются от условий фильтра запроса, например, действие для нашего правила содержит условие фильтра. Действие правила выражается одним деревом запроса, которое является копией оператора SELECT в команде, создающей представление.

Примечание

Два дополнительных элемента списка отношений NEW и OLD, которые можно увидеть в соответствующей строке pg_rewrite, не представляют интереса для правил SELECT.

Сейчас мы наполним таблицы unit (единицы измерения), shoe_data (данные о туфлях) и shoelace_data (данные о шнурках) и выполним простой запрос к представлению:

INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0, 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0, 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0, 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9, 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60, 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40, 'inch');

SELECT * FROM shoelace;

 sl_name   | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1       |        5 | black    |     80 | cm      |        80
 sl2       |        6 | black    |    100 | cm      |       100
 sl7       |        7 | brown    |     60 | cm      |        60
 sl3       |        0 | black    |     35 | inch    |      88.9
 sl4       |        8 | black    |     40 | inch    |     101.6
 sl8       |        1 | brown    |     40 | inch    |     101.6
 sl5       |        4 | brown    |      1 | m       |       100
 sl6       |        0 | brown    |    0.9 | m       |        90
(8 rows)

Это самый простой запрос SELECT, который можно выполнить с нашими представлениями, и мы воспользуемся этим, чтобы объяснить азы правил представлений. Запрос SELECT * FROM shoelace интерпретируется анализатором запросов и преобразуется в дерево запроса:

SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM shoelace shoelace;

Это дерево передаётся в систему правил, которая проходит по списку отношений и проверяет, есть ли какие-либо правила для этих отношений. Обрабатывая элемент отношения shoelace (сейчас он единственный), система правил находит правило _RETURN с деревом запроса:

SELECT s.sl_name, s.sl_avail,
       s.sl_color, s.sl_len, s.sl_unit,
       s.sl_len * u.un_fact AS sl_len_cm
  FROM shoelace old, shoelace new,
       shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

Чтобы развернуть представление, механизм перезаписи просто формирует новый элемент для списка отношений — подзапрос, содержащий дерево действия правила, и подставляет этот элемент вместо исходного, на который ссылалось представление. Получившееся перезаписанное дерево запроса будет почти таким как дерево запроса:

SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM (SELECT s.sl_name,
               s.sl_avail,
               s.sl_color,
               s.sl_len,
               s.sl_unit,
               s.sl_len * u.un_fact AS sl_len_cm
          FROM shoelace_data s, unit u
         WHERE s.sl_unit = u.un_name) shoelace;

Однако есть одно различие: в списке отношений подзапроса будут содержаться два дополнительных элемента: shoelace old и shoelace new. Эти элементы не принимают непосредственного участия в запросе, так как они не задействованы в дереве соединения подзапроса и в целевом списке. Механизм перезаписи использует их для хранения информации о проверке прав доступа, которая изначально хранилась в элементе, указывающем на представление. Таким образом, исполнитель будет по-прежнему проверять, имеет ли пользователь необходимые права для доступа к представлению, хотя в перезаписанном запросе это представление не фигурирует непосредственно.

Так было применено первое правило. Система правил продолжит проверку оставшихся элементов списка отношений на верхнем уровне запроса (в данном случае таких элементов нет) и рекурсивно проверит элементы списка отношений в добавленном подзапросе, не ссылаются ли они на представления. (Но old и new разворачиваться не будут — иначе мы получили бы бесконечную рекурсию!) В этом примере для shoelace_data и unit нет правил перезаписи, так что перезапись завершается и результат, полученный выше, передаётся планировщику.

Сейчас мы хотим написать запрос, который выбирает туфли из имеющихся в данный момент, для которых есть подходящие шнурки (по цвету и длине) и число готовых пар больше или равно двум.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1      |        2 | sl1     |        5 |           2
 sh3      |        4 | sl7     |        7 |           4
(2 rows)

На этот раз анализатор запроса выводит такое дерево:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Первое правило применяется к представлению shoe_ready и в результате получается дерево запроса:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM shoe rsh, shoelace rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Подобным образом, правила для shoe и shoelace подставляются в список отношений, что даёт окончательное дерево запроса:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM (SELECT sh.shoename,
                       sh.sh_avail,
                       sh.slcolor,
                       sh.slminlen,
                       sh.slminlen * un.un_fact AS slminlen_cm,
                       sh.slmaxlen,
                       sh.slmaxlen * un.un_fact AS slmaxlen_cm,
                       sh.slunit
                  FROM shoe_data sh, unit un
                 WHERE sh.slunit = un.un_name) rsh,
               (SELECT s.sl_name,
                       s.sl_avail,
                       s.sl_color,
                       s.sl_len,
                       s.sl_unit,
                       s.sl_len * u.un_fact AS sl_len_cm
                  FROM shoelace_data s, unit u
                 WHERE s.sl_unit = u.un_name) rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

Это может показаться неэффективным, но планировщик преобразует этот запрос в одноуровневое дерево, «подтягивая» подзапросы в главный запрос, а затем планирует соединения так же, как и при явной записи с соединениями. Таким образом, упрощение дерева запросов является оптимизацией, которая производится независимо от перезаписи запросов.

40.2.2. Правила представлений не для SELECT

До этого в описании правил представлений не затрагивались два компонента дерева запросов — тип команды и результирующее отношение. На самом деле, тип команды не важен для правил представления, но результирующее отношение может повлиять на работу механизма перезаписи, потому что если это представление, требуются дополнительные операции.

Есть только несколько отличий между деревом запроса для SELECT и деревом для другой команды. Очевидно, у них различные типы команд, и для команды, отличной от SELECT, результирующее отношение указывает на элемент в списке отношений, куда должен попасть результат. Все остальные компоненты в точности те же. Поэтому, например, если взять таблицы t1 и t2 со столбцами a и b, деревья запросов для этих операторов:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

будут практически одинаковыми. В частности:

  • Списки отношений содержат элементы для таблиц t1 и t2.

  • Выходные списки содержат одну переменную, указывающую на столбец b элемента-отношения для таблицы t2.

  • Выражения условий сравнивают столбцы a обоих элементов-отношений на равенство.

  • Деревья соединений показывают простое соединение между t1 и t2.

Как следствие, для обоих деревьев строятся похожие планы выполнения, с соединением двух таблиц. Для UPDATE планировщик добавляет в выходной список недостающие столбцы из t1 и окончательное дерево становится таким:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

В результате исполнитель, обрабатывающий соединение, выдаёт тот же результат, что и запрос:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

Но с UPDATE есть маленькая проблема: часть плана исполнителя, в которой выполняется соединение, не представляет, для чего предназначены результаты соединения. Она просто выдаёт результирующий набор строк. Фактически есть одна команда SELECT, а другая, UPDATE, обрабатывается исполнителем выше, где он уже знает, что это команда UPDATE и что результат должен попасть в таблицу t1. Но какие из строк таблицы должны заменяться новыми?

Для решения этой проблемы в выходной список операторов UPDATEDELETE) добавляется ещё один элемент: идентификатор текущего кортежа (Current Tuple ID, CTID). Это системный столбец, содержащий номер блока в файле и позицию строки в блоке. Зная таблицу, по CTID можно получить исходную строку в t1, подлежащую изменению. С добавленным в выходной список CTID запрос фактически выглядит так:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Теперь мы перейдём ещё к одной особенности Postgres Pro. Старые строки таблицы не переписываются, поэтому ROLLBACK выполняется быстро. С командой UPDATE в таблицу вставляется новая строка результата (без CTID) и в заголовке старой строки, на которую указывает CTID, в поля cmax и xmax записываются текущий счётчик команд и идентификатор текущей транзакции. Таким образом, старая строка оказывается скрытой и после фиксирования транзакции процесс очистки может окончательно удалить неактуальную версию строки.

Зная всё это, мы можем применять правила представлений абсолютно таким же образом к любой команде — никаких различий нет.

40.2.3. Преимущества представлений в Postgres Pro

Выше было показано, как система правил внедряет определения представлений в исходное дерево запроса. Во втором примере простой запрос SELECT к одному представлению создал окончательное дерево запроса, соединяющее 4 таблицы (таблица unit использовалась дважды с разными именами).

Преимущество реализации представлений через систему правил заключается в том, что планировщик получает в одном дереве запроса всю информацию о таблицах, которые нужно прочитать, о том, как связаны эти таблицы, об условиях в представлениях, а также об условиях, заданных в исходном запросе. И всё это имеет место, когда сам исходный запрос представляет собой соединение представлений. Планировщик должен выбрать лучший способ выполнения запроса, и чем больше информации он получит, тем лучше может быть его выбор. И то, как в Postgres Pro реализована система правил, гарантирует, что ему поступает вся информация, собранная о запросе на данный момент.

40.2.4. Изменение представления

Но что произойдёт, если записать имя представления в качестве целевого отношения команды INSERT, UPDATE или DELETE? Если проделать подстановки, описанные выше, будет получено дерево запроса, в котором результирующее отношение указывает на элемент-подзапрос, что не будет работать. Однако Postgres Pro даёт ряд возможностей, чтобы сделать представления изменяемыми.

Если подзапрос выбирает данные из одного базового отношения и он достаточно прост, механизм перезаписи может автоматически заменить его нижележащим базовым отношением, чтобы команды INSERT, UPDATE или DELETE обращались к базовому отношению. Представления, «достаточно простые» для этого, называются автоматически изменяемыми. Подробнее виды представлений, которые могут изменяться автоматически, описаны в CREATE VIEW.

Эту задачу также можно решить, создав триггер INSTEAD OF для представления. В этом случае перезапись будет работать немного по-другому. Для INSERT механизм перезаписи не делает с представлением ничего, оставляя его результирующим отношением запроса. Для UPDATE и DELETE ему по-прежнему придётся разворачивать запрос представления, чтобы получить «старые» строки, которые эта команда попытается изменить или удалить. Поэтому представление разворачивается как обычно, но в запрос добавляется ещё один элемент списка отношений, указывающий на представление в роли результирующего отношения.

При этом возникает проблема идентификации строк в представлении, подлежащих изменению. Вспомните, что когда результирующее отношение является таблицей, в выходной список добавляется специальное поле CTID, указывающее на физическое расположение изменяемых строк. Но это не будет работать, когда результирующее отношение — представление, так как в представлениях нет CTID, потому что их строки физически нигде не находятся. Вместо этого, для операций UPDATE или DELETE в выходной список добавляется специальный элемент wholerow (вся строка), который разворачивается в содержимое всех столбцов представления. Используя этот элемент, исполнитель передаёт строку «old» в триггер INSTEAD OF. Какие именно строки должны изменяться фактически, будет решать сам триггер, исходя из полученных значений старых и новых строк.

Кроме того, пользователь может определить правила INSTEAD, в которых задать действия замены для команд INSERT, UPDATE и DELETE с представлением. Эти правила обычно преобразуют команду в другую команду, изменяющую одну или несколько таблиц, а не представление. Эта тема освещается в Разделе 40.4.

Заметьте, что такие правила вычисляются сначала, перезаписывая исходный запрос до того, как он будет планироваться и выполняться. Поэтому, если для представления определены и триггеры INSTEAD OF, и правила для INSERT, UPDATE или DELETE, сначала вычисляются правила, а в зависимости от их действия, триггеры могут не вызываться вовсе.

Автоматическая перезапись запросов INSERT, UPDATE или DELETE с простыми представлениями всегда производится в последнюю очередь. Таким образом, если у представления есть правила или триггеры, они переопределяют поведение автоматически изменяемых представлений.

Если для представления не определены правила INSTEAD или триггеры INSTEAD OF, и запрос не удаётся автоматически переписать в виде обращения к нижележащему базовому отношению, возникает ошибка, потому что исполнитель не сможет изменить такое представление.

51.74. pg_locks

The view pg_locks provides access to information about the locks held by active processes within the database server. See Chapter 13 for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant process. Thus, the same lockable object might appear many times, if multiple processes are holding or waiting for locks on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general database objects (identified by class OID and object OID, in the same way as in pg_description or pg_depend). Also, the right to extend a relation is represented as a separate lockable object, as is the right to update pg_database.datfrozenxid. Also, advisory locks can be taken on numbers that have user-defined meanings.

Table 51.75. pg_locks Columns

NameTypeReferencesDescription
locktypetext  Type of the lockable object: relation, extend, frozenid, page, tuple, transactionid, virtualxid, object, userlock, or advisory
databaseoidpg_database.oid OID of the database in which the lock target exists, or zero if the target is a shared object, or null if the target is a transaction ID
relationoidpg_class.oid OID of the relation targeted by the lock, or null if the target is not a relation or part of a relation
pageinteger  Page number targeted by the lock within the relation, or null if the target is not a relation page or tuple
tuplesmallint  Tuple number targeted by the lock within the page, or null if the target is not a tuple
virtualxidtext  Virtual ID of the transaction targeted by the lock, or null if the target is not a virtual transaction ID
transactionidxid  ID of the transaction targeted by the lock, or null if the target is not a transaction ID
classidoidpg_class.oid OID of the system catalog containing the lock target, or null if the target is not a general database object
objidoidany OID column OID of the lock target within its system catalog, or null if the target is not a general database object
objsubidsmallint  Column number targeted by the lock (the classid and objid refer to the table itself), or zero if the target is some other general database object, or null if the target is not a general database object
virtualtransactiontext  Virtual ID of the transaction that is holding or awaiting this lock
pidinteger  Process ID of the server process holding or awaiting this lock, or null if the lock is held by a prepared transaction
modetext Name of the lock mode held or desired by this process (see Section 13.3.1 and Section 13.2.3)
grantedboolean True if lock is held, false if lock is awaited
fastpathboolean True if lock was taken via fast path, false if taken via main lock table

granted is true in a row representing a lock held by the indicated process. False indicates that this process is currently waiting to acquire this lock, which implies that at least one other process is holding or waiting for a conflicting lock mode on the same lockable object. The waiting process will sleep until the other lock is released (or a deadlock situation is detected). A single process can be waiting to acquire at most one lock at a time.

Throughout running a transaction, a server process holds an exclusive lock on the transaction's virtual transaction ID. If a permanent ID is assigned to the transaction (which normally happens only if the transaction changes the state of the database), it also holds an exclusive lock on the transaction's permanent transaction ID until it ends. When a process finds it necessary to wait specifically for another transaction to end, it does so by attempting to acquire share lock on the other transaction's ID (either virtual or permanent ID depending on the situation). That will succeed only when the other transaction terminates and releases its locks.

Although tuples are a lockable type of object, information about row-level locks is stored on disk, not in memory, and therefore row-level locks normally do not appear in this view. If a process is waiting for a row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the current holder of that row lock.

Advisory locks can be acquired on keys consisting of either a single bigint value or two integer values. A bigint key is displayed with its high-order half in the classid column, its low-order half in the objid column, and objsubid equal to 1. The original bigint value can be reassembled with the expression (classid::bigint << 32) | objid::bigint. Integer keys are displayed with the first key in the classid column, the second key in the objid column, and objsubid equal to 2. The actual meaning of the keys is up to the user. Advisory locks are local to each database, so the database column is meaningful for an advisory lock.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the current database. Although its relation column can be joined against pg_class.oid to identify locked relations, this will only work correctly for relations in the current database (those for which the database column is either the current database's OID or zero).

The pid column can be joined to the pid column of the pg_stat_activity view to get more information on the session holding or awaiting each lock, for example

SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
    ON pl.pid = psa.pid;

Also, if you are using prepared transactions, the virtualtransaction column can be joined to the transaction column of the pg_prepared_xacts view to get more information on prepared transactions that hold locks. (A prepared transaction can never be waiting for a lock, but it continues to hold the locks it acquired while running.) For example:

SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
    ON pl.virtualtransaction = '-1/' || ppx.transaction;

While it is possible to obtain information about which processes block which other processes by joining pg_locks against itself, this is very difficult to get right in detail. Such a query would have to encode knowledge about which lock modes conflict with which others. Worse, the pg_locks view does not expose information about which processes are ahead of which others in lock wait queues, nor information about which processes are parallel workers running on behalf of which other client sessions. It is better to use the pg_blocking_pids() function (see Table 9.63) to identify which process(es) a waiting process is blocked behind.

The pg_locks view displays data from both the regular lock manager and the predicate lock manager, which are separate systems; in addition, the regular lock manager subdivides its locks into regular and fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on fast-path locks (with fastpath = true) is gathered from each backend one at a time, without freezing the state of the entire lock manager, so it is possible for locks to be taken or released while information is gathered. Note, however, that these locks are known not to conflict with any other lock currently in place. After all backends have been queried for fast-path locks, the remainder of the regular lock manager is locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic action. After unlocking the regular lock manager, the predicate lock manager is similarly locked and all predicate locks are collected as an atomic action. Thus, with the exception of fast-path locks, each lock manager will deliver a consistent set of results, but as we do not lock both lock managers simultaneously, it is possible for locks to be taken or released after we interrogate the regular lock manager and before we interrogate the predicate lock manager.

Locking the regular and/or predicate lock manager could have some impact on database performance if this view is very frequently accessed. The locks are held only for the minimum amount of time necessary to obtain data from the lock managers, but this does not completely eliminate the possibility of a performance impact.