58.2. Функции для индексных методов доступа

Индексный метод доступа должен определить в IndexAmRoutine следующие функции построения и обслуживания индексов:

IndexBuildResult *
ambuild (Relation heapRelation,
         Relation indexRelation,
         IndexInfo *indexInfo);

Строит новый индекс. Отношение индекса уже физически создано, но пока пусто. Оно должно быть наполнено фиксированными данными, которые требуются методу доступа, и записями для всех кортежей, уже существующих в таблице. Обычно функция ambuild вызывает IndexBuildHeapScan() для поиска в таблице существующих кортежей и для вычисления ключей, которые должны вставляться в этот индекс. Эта функция должна возвращать структуру, выделенную вызовом palloc и содержащую статистику нового индекса.

void
ambuildempty (Relation indexRelation);

Создаёт пустой индекс и записывает его в слой инициализации (INIT_FORKNUM) данного отношения. Этот метод вызывается только для нежурналируемых индексов; пустой индекс, записанный в слой инициализации, будет копироваться в основной слой отношения при каждом перезапуске сервера.

bool
aminsert (Relation indexRelation,
          Datum *values,
          bool *isnull,
          ItemPointer heap_tid,
          Relation heapRelation,
          IndexUniqueCheck checkUnique,
          IndexInfo *indexInfo);

Вставляет новый кортеж в существующий индекс. В массивах values и isnull передаются значения ключа, которые должны быть проиндексированы, а в heap_tid — идентификатор индексируемого кортежа (TID). Если метод доступа поддерживает уникальные индексы (флаг amcanunique установлен), параметр checkUnique указывает, какая проверка уникальности должна выполняться. Это зависит от того, является ли ограничение уникальности откладываемым; за подробностями обратитесь к Разделу 58.5. Обычно параметр heapRelation нужен методу доступа только для проверки уникальности (так как он должен обратиться к основным данным, чтобы убедиться в актуальности кортежа).

Возвращаемый функцией булев результат имеет значение, только когда параметр checkUnique равен UNIQUE_CHECK_PARTIAL. В этом случае результат TRUE означает, что новая запись признана уникальной, тогда как FALSE означает, что она может быть неуникальной (и требуется назначить отложенную проверку уникальности). В других случаях рекомендуется возвращать постоянный результат FALSE.

Некоторые индексы могут индексировать не все кортежи. Если кортеж не будет индексирован, aminsert должна просто завершиться, не делая ничего.

Если индексный МД хочет кешировать данные между операциями добавления в индекс в одном операторе SQL, он может выделить память в indexInfo->ii_Context и сохранить указатель на эти данные в поле indexInfo->ii_AmCache (которое изначально равно NULL).

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
              IndexBulkDeleteResult *stats,
              IndexBulkDeleteCallback callback,
              void *callback_state);

Удаляет кортеж(и) из индекса. Это операция «массового удаления», которая предположительно будет реализована путём сканирования всего индекса и проверки для каждой записи, должна ли она удаляться. Переданная функция callback должна вызываться в стиле callback(TID, callback_state) с результатом bool, который говорит, должна ли удаляться запись индекса, на которую указывает передаваемый TID. Возвращать эта функция должна NULL или структуру, выделенную вызовом palloc и содержащую статистику результата удаления. NULL можно вернуть, если никакая информация не должна передаваться в amvacuumcleanup.

Из-за ограничения maintenance_work_mem процедура ambulkdelete может вызываться несколько раз, когда удалению подлежит большое количество кортежей. В аргументе stats передаётся результат предыдущего вызова для данного индекса (при первом вызове в ходе операции VACUUM он содержит NULL). Это позволяет методу доступа накапливать статистику в процессе всей операции. Обычно ambulkdelete модифицирует и возвращает одну и ту же структуру, если в stats передаётся не NULL.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
                 IndexBulkDeleteResult *stats);

Провести уборку после операции VACUUM (до этого ambulkdelete могла вызываться несколько или ноль раз). От этой функции не требуется ничего, кроме как выдать статистику по индексу, но она может произвести массовую уборку, например, высвободить пустые страницы индекса. В stats ей передаётся структура, возвращённая при последнем вызове ambulkdelete, либо NULL, если ambulkdelete не вызывалась, так как никакие кортежи удалять не требовалось. Эта функция должна возвращать NULL или структуру, выделенную вызовом palloc. Содержащаяся в этой структуре статистика будет отражена в записи в pg_class и попадёт в вывод команды VACUUM, если она выполнялась с указанием VERBOSE. NULL может возвращаться, если индекс вовсе не изменился в процессе операции VACUUM, но в противном случае должна возвращаться корректная статистика.

Начиная с PostgreSQL версии 8.4, amvacuumcleanup также вызывается в конце операции ANALYZE. В этом случае stats всегда NULL и любое возвращаемое значение игнорируется. Этот вариант вызова можно распознать, проверив поле info->analyze_only. При таком вызове методу доступа рекомендуется ничего не делать, кроме как провести уборку после добавления данных, и только в рабочем процессе автоочистки.

bool
amcanreturn (Relation indexRelation, int attno);

Проверяет, поддерживается ли сканирование только индекса для заданного столбца, когда для записи индекса возвращаются значения индексируемых столбцов в виде IndexTuple. Атрибуты нумеруются с 1, то есть для первого столбца attno равен 1. Возвращает true, если такое сканирование поддерживается, а иначе — false. Если индексный метод доступа в принципе не поддерживает сканирование только индекса, в поле amcanreturn его структуры IndexAmRoutine можно записать NULL.

void
amcostestimate (PlannerInfo *root,
                IndexPath *path,
                double loop_count,
                Cost *indexStartupCost,
                Cost *indexTotalCost,
                Selectivity *indexSelectivity,
                double *indexCorrelation,
                double *indexPages);

Рассчитывает примерную стоимость сканирования индекса. Эта функция полностью описывается ниже в Разделе 58.6.

bytea *
amoptions (ArrayType *reloptions,
           bool validate);

Разбирает и проверяет массив параметров для индекса. Эта функция вызывается, только когда для индекса задан отличный от NULL массив reloptions. Массив reloptions состоит из элементов типа text, содержащих записи вида имя=значение. Данная функция должна получить значение типа bytea, которое будет скопировано в поле rd_options записи индекса в relcache. Содержимое этого значения bytea определяется самим методом доступа; большинство стандартных методов доступа помещают в него структуру StdRdOptions. Когда параметр validate равен true, эта функция должна выдать подходящее сообщение об ошибке, если какие-либо параметры нераспознаны или имеют недопустимые значения; если же validate равен false, некорректные записи должны просто игнорироваться. (В validate передаётся false, когда параметры уже загружены в pg_catalog; при этом неверная запись может быть обнаружена, только если в методе доступа поменялись правила обработки параметров, и в этом случае стоит просто игнорировать такие записи.) NULL можно вернуть, когда нужно получить поведение по умолчанию.

bool
amproperty (Oid index_oid, int attno,
            IndexAMProperty prop, const char *propname,
            bool *res, bool *isnull);

Процедура amproperty позволяет индексным методам доступа переопределять стандартное поведение функции pg_index_column_has_property и связанных с ней. Если метод доступа не проявляет никаких особенностей при запросе свойств индексов, поле amproperty в структуре IndexAmRoutine может содержать NULL. В противном случае процедура amproperty будет вызываться с нулевыми параметрами index_oid и attno при вызове pg_indexam_has_property, либо с корректным index_oid и нулевым attno при вызове pg_index_has_property, либо с корректным index_oid и положительным attno при вызове pg_index_column_has_property. В prop передаётся значение перечисления, указывающее на проверяемое значение, а в propname — строка с именем свойства. Если код ядра не распознаёт имя свойства, в prop передаётся AMPROP_UNKNOWN. Методы доступа могут воспринимать нестандартные имена свойств, проверяя propname на совпадение (для согласованности с кодом ядра используйте для проверки pg_strcasecmp); для имён, известных коду ядра, лучше проверять prop. Если процедура amproperty возвращает true, это значит, что она установила результат проверки свойства: она должна задать в *res возвращаемое логическое значение или установить в *isnull значение true, чтобы возвратить NULL. (Перед вызовом обе упомянутые переменные инициализируются значением false.) Если amproperty возвращает false, код ядра переключается на обычную логику определения результата проверки свойства.

Методы доступа, поддерживающие операторы упорядочивания, должны реализовывать проверку свойства AMPROP_DISTANCE_ORDERABLE, так как код ядра не знает, как это сделать и возвращает NULL. Также может быть полезно реализовать проверку AMPROP_RETURNABLE, если это можно сделать проще, чем обращаясь к индексу и вызывая amcanreturn (что делает код ядра по умолчанию). Для всех остальных стандартных свойств поведение ядра по умолчанию можно считать удовлетворительным.

bool
amvalidate (Oid opclassoid);

Проверяет записи в каталоге для заданного класса операторов, насколько это может сделать метод доступа. Например, это может включать проверку, все ли необходимые опорные функции реализованы. Функция amvalidate должна вернуть false, если класс операторов непригоден к использованию. Сообщения о проблеме следует выдать через ereport.

Цель индекса, конечно, в том, чтобы поддерживать поиск кортежей, соответствующих индексируемому условию WHERE, по ограничению или ключу поиска. Сканирование индекса описывается более полно ниже, в Разделе 58.3. Индексный метод доступа может поддерживать «простое» сканирование, сканирование по «битовой карте» или и то, и другое. Метод доступа должен или может реализовывать следующие функции, связанные со сканированием:

IndexScanDesc
ambeginscan (Relation indexRelation,
             int nkeys,
             int norderbys);

Подготавливает метод к сканированию индекса. В параметрах nkeys и norderbys задаётся количество операторов условия и сортировки, которые будут задействованы при сканировании; это может быть полезно для выделения памяти. Заметьте, что фактические значения ключей сканирования в этот момент ещё не предоставляются. В результате функция должна выдать структуру, выделенную средствами palloc. В связи с особенностями реализации, метод доступа должен создать эту структуру, вызвав RelationGetIndexScan(). В большинстве случаев все действия ambeginscan сводятся только к выполнению этого вызова и, возможно, получению блокировок; всё самое интересное при запуске сканирования индекса происходит в amrescan.

void
amrescan (IndexScanDesc scan,
          ScanKey keys,
          int nkeys,
          ScanKey orderbys,
          int norderbys);

Запускает или перезапускает сканирование индекса, возможно, с новыми ключами сканирования. (Для перезапуска сканирования с ранее переданными ключами в keys и/или orderbys передаётся NULL.) Заметьте, что количество ключей или операторов сортировки не может превышать значения, поступившие в ambeginscan. На практике возможность перезапуска используется, когда в соединении со вложенным циклом выбирается новый внешний кортеж, так что требуется сравнение с новым ключом, но структура ключей сканирования не меняется.

bool
amgettuple (IndexScanDesc scan,
            ScanDirection direction);

Выбирает следующий кортеж в ходе данного сканирования, с передвижением по индексу в заданном направлении (вперёд или назад). Возвращает TRUE, если кортеж был получен, или FALSE, если подходящих кортежей не осталось. В случае успеха в структуре scan сохраняется TID кортежа. Заметьте, что под «успехом» здесь подразумевается только, что индекс содержит запись, соответствующую ключам сканирования, а не то, что данный кортеж обязательно существует в данных или оказывается видимым в снимке вызывающего субъекта. При положительном результате amgettuple должна также установить для свойства scan->xs_recheck значение TRUE или FALSE. FALSE будет означать, что запись индекса точно соответствует ключам сканирования, а TRUE, что есть сомнение в этом, так что условия, представленные ключами сканирования, необходимо ещё раз перепроверить для фактического кортежа, когда он будет получен. Это свойство введено для поддержки «неточных» операторов индексов. Заметьте, что такая перепроверка касается только условий сканирования; предикат частичного индекса (если он имеется) никогда не перепроверяется кодом, вызывающим amgettuple.

Если индекс поддерживает сканирование только индекса (то есть, amcanreturn для него равен TRUE), то в случае успеха метод доступа должен также проверить флаг scan->xs_want_itup и, если он установлен, должен вернуть исходные индексированные данные для этой записи индекса. Данные могут возвращаться посредством указателя на IndexTuple, сохранённого в scan->xs_itup, с дескриптором scan->xs_itupdesc; либо посредством указателя на HeapTuple, сохранённого в scan->xs_hitup, с дескриптором кортежа scan->xs_hitupdesc. (Второй вариант должен использоваться для восстановления данных, которые могут не уместиться в IndexTuple.) В любом случае за управление целевой областью данных, определяемой этим указателем, отвечает метод доступа. Данные должны оставаться актуальными как минимум до следующего вызова amgettuple, amrescan или amendscan в процессе сканирования.

Функция amgettuple должна быть реализована, только если метод доступа поддерживает «простое» сканирование индекса. В противном случае поле amgettuple в структуре IndexAmRoutine должно содержать NULL.

int64
amgetbitmap (IndexScanDesc scan,
             TIDBitmap *tbm);

Выбирает все кортежи для данного сканирования и добавляет их в передаваемую вызывающим кодом структуру TIDBitmap (то есть, получает логическое объединение множества TID выбранных кортежей с множеством, уже записанным в битовой карте). Возвращает эта функция число полученных кортежей (это может быть только приблизительная оценка; например, некоторые методы доступа не учитывают повторяющиеся значения). Добавляя идентификаторы кортежей в битовую карту, amgetbitmap может обозначить, что для этих кортежей нужно перепроверить условия сканирования. Для этого так же, как и в amgettuple, устанавливается выходной параметр xs_recheck. Замечание: в текущей реализации эта возможность увязывается с возможностью неточного хранения самих битовых карт, таким образом вызывающий код перепроверяет для отмеченных кортежей и условия сканирования, и предикат частичного индекса (если он имеется). Однако так может быть не всегда. Функции amgetbitmap и amgettuple не могут использоваться в одном сканировании индекса; есть и другие ограничения в применении amgetbitmap, описанные в Разделе 58.3.

Функция amgetbitmap должна быть реализована, только если метод доступа поддерживает сканирование индекса «по битовой карте». В противном случае поле amgetbitmap в структуре IndexAmRoutine должно содержать NULL.

void
amendscan (IndexScanDesc scan);

Завершает сканирование и освобождает ресурсы. Саму структуру scan освобождать не следует, но любые блокировки или закрепления объектов, установленные внутри метода доступа, должны быть сняты.

void
ammarkpos (IndexScanDesc scan);

Помечает текущую позицию сканирования. Метод доступа должен поддерживать сохранение только одной позиции в процессе сканирования.

Функция ammarkpos должна быть реализована, только если метод доступа поддерживает сканирование по порядку. Если это не так, в поле ammarkpos в структуре IndexAmRoutine можно записать NULL.

void
amrestrpos (IndexScanDesc scan);

Восстанавливает позицию сканирования, отмеченную последней.

Функция amrestrpos должна быть реализована, только если метод доступа поддерживает сканирование по порядку. Если это не так, в поле amrestrpos в структуре IndexAmRoutine можно записать NULL.

Помимо обычного сканирования некоторые типы индексов могут поддерживать параллельное сканирование индекса, что позволяет осуществлять совместное сканирование индекса нескольким обслуживающим процессам. Для этого метод доступа должен организовать работу так, чтобы каждый из взаимодействующих процессов возвращал подмножество кортежей, которое бы возвращалось при обычном, не параллельном сканировании, и таким образом, чтобы объединение этих подмножеств совпадало с множеством кортежей, возвращаемых при обычном сканировании. Более того, чтобы не требовалась глобальная сортировка кортежей, возвращаемых при параллельном сканировании, порядок кортежей в подмножествах, выдаваемых всеми взаимодействующими процессами, должен соответствовать запрошенному. Для поддержки параллельного сканирования по индексу должны быть реализованы следующие функции:

Size
amestimateparallelscan (void);

Рассчитывает и возвращает объём (в байтах) в динамической разделяемой памяти, который может потребоваться для осуществления параллельного сканирования. (Этот объём дополняет, а не заменяет объём памяти, затребованный для данных, независимо от МД, в ParallelIndexScanDescData.)

Эту функцию можно не реализовывать для методов доступа, которые не поддерживают параллельное сканирование, или для которых объём дополнительно требующейся памяти равен нулю.

void
aminitparallelscan (void *target);

Эта функция будет вызываться для инициализации области динамической разделяемой памяти в начале параллельного сканирования. Параметр target будет указывать на область объёма, не меньшего, чем возвратила функция amestimateparallelscan, и данная функция может хранить в этой области любые нужные ей данные.

Эту функцию можно не реализовывать для методов доступа, которые не поддерживают параллельное сканирование, или когда выделенная область в разделяемой памяти не требует инициализации.

void
amparallelrescan (IndexScanDesc scan);

Эта функция, если её реализовать, будет вызываться перед перезапуском параллельного сканирования индекса. Она должна сбросить всё разделяемое состояние, установленное функцией aminitparallelscan, с тем, чтобы такое сканирование перезапустилось с начала.

39.2. Views and the Rule System #

Views in PostgreSQL are implemented using the rule system. A view is basically an empty table (having no actual storage) with an ON SELECT DO INSTEAD rule. Conventionally, that rule is named _RETURN. So a view like

CREATE VIEW myview AS SELECT * FROM mytab;

is very nearly the same thing as

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
    SELECT * FROM mytab;

although you can't actually write that, because tables are not allowed to have ON SELECT rules.

A view can also have other kinds of DO INSTEAD rules, allowing INSERT, UPDATE, or DELETE commands to be performed on the view despite its lack of underlying storage. This is discussed further below, in Section 39.2.4.

39.2.1. How SELECT Rules Work #

Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT, UPDATE or DELETE. And they have different semantics from rules on the other command types in that they modify the query tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional SELECT action that is INSTEAD. This restriction was required to make rules safe enough to open them for ordinary users, and it restricts ON SELECT rules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using them in turn. One of the two first views is customized later by adding rules for INSERT, UPDATE, and DELETE operations so that the final result will be a view that behaves like a real table with some magic functionality. This is not such a simple example to start from and this makes things harder to get into. But it's better to have one example that covers all the points discussed step by step rather than having many different ones that might mix up in mind.

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (
    shoename   text,          -- primary key
    sh_avail   integer,       -- available number of pairs
    slcolor    text,          -- preferred shoelace color
    slminlen   real,          -- minimum shoelace length
    slmaxlen   real,          -- maximum shoelace length
    slunit     text           -- length unit
);

CREATE TABLE shoelace_data (
    sl_name    text,          -- primary key
    sl_avail   integer,       -- available number of pairs
    sl_color   text,          -- shoelace color
    sl_len     real,          -- shoelace length
    sl_unit    text           -- length unit
);

CREATE TABLE unit (
    un_name    text,          -- primary key
    un_fact    real           -- factor to transform to cm
);

As you can see, they represent shoe-store data.

The views are created as:

CREATE VIEW shoe AS
    SELECT sh.shoename,
           sh.sh_avail,
           sh.slcolor,
           sh.slminlen,
           sh.slminlen * un.un_fact AS slminlen_cm,
           sh.slmaxlen,
           sh.slmaxlen * un.un_fact AS slmaxlen_cm,
           sh.slunit
      FROM shoe_data sh, unit un
     WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
    SELECT s.sl_name,
           s.sl_avail,
           s.sl_color,
           s.sl_len,
           s.sl_unit,
           s.sl_len * u.un_fact AS sl_len_cm
      FROM shoelace_data s, unit u
     WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
    SELECT rsh.shoename,
           rsh.sh_avail,
           rsl.sl_name,
           rsl.sl_avail,
           least(rsh.sh_avail, rsl.sl_avail) AS total_avail
      FROM shoe rsh, shoelace rsl
     WHERE rsl.sl_color = rsh.slcolor
       AND rsl.sl_len_cm >= rsh.slminlen_cm
       AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create a relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied whenever the relation shoelace is referenced in a query's range table. The rule has no rule qualification (discussed later, with the non-SELECT rules, since SELECT rules currently cannot have them) and it is INSTEAD. Note that rule qualifications are not the same as query qualifications. The action of our rule has a query qualification. The action of the rule is one query tree that is a copy of the SELECT statement in the view creation command.

Note

The two extra range table entries for NEW and OLD that you can see in the pg_rewrite entry aren't of interest for SELECT rules.

Now we populate unit, shoe_data and shoelace_data and run a simple query on a view:

INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

SELECT * FROM shoelace;

 sl_name   | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1       |        5 | black    |     80 | cm      |        80
 sl2       |        6 | black    |    100 | cm      |       100
 sl7       |        7 | brown    |     60 | cm      |        60
 sl3       |        0 | black    |     35 | inch    |      88.9
 sl4       |        8 | black    |     40 | inch    |     101.6
 sl8       |        1 | brown    |     40 | inch    |     101.6
 sl5       |        4 | brown    |      1 | m       |       100
 sl6       |        0 | brown    |    0.9 | m       |        90
(8 rows)

This is the simplest SELECT you can do on our views, so we take this opportunity to explain the basics of view rules. The SELECT * FROM shoelace was interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there are rules for any relation. When processing the range table entry for shoelace (the only one up to now) it finds the _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
       s.sl_color, s.sl_len, s.sl_unit,
       s.sl_len * u.un_fact AS sl_len_cm
  FROM shoelace old, shoelace new,
       shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule's action query tree, and substitutes this range table entry for the original one that referenced the view. The resulting rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM (SELECT s.sl_name,
               s.sl_avail,
               s.sl_color,
               s.sl_len,
               s.sl_unit,
               s.sl_len * u.un_fact AS sl_len_cm
          FROM shoelace_data s, unit u
         WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery's range table has two extra entries shoelace old and shoelace new. These entries don't participate directly in the query, since they aren't referenced by the subquery's join tree or target list. The rewriter uses them to store the access privilege check information that was originally present in the range-table entry that referenced the view. In this way, the executor will still check that the user has proper privileges to access the view, even though there's no direct use of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table entries in the top query (in this example there are no more), and it will recursively check the range-table entries in the added subquery to see if any of them reference views. (But it won't expand old or new — otherwise we'd have infinite recursion!) In this example, there are no rewrite rules for shoelace_data or unit, so rewriting is complete and the above is the final result given to the planner.

Now we want to write a query that finds out for which shoes currently in the store we have the matching shoelaces (color and length) and where the total number of exactly matching pairs is greater than or equal to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1      |        2 | sl1     |        5 |           2
 sh3      |        4 | sl7     |        7 |           4
(2 rows)

The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for the shoe_ready view and it results in the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM shoe rsh, shoelace rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Similarly, the rules for shoe and shoelace are substituted into the range table of the subquery, leading to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM (SELECT sh.shoename,
                       sh.sh_avail,
                       sh.slcolor,
                       sh.slminlen,
                       sh.slminlen * un.un_fact AS slminlen_cm,
                       sh.slmaxlen,
                       sh.slmaxlen * un.un_fact AS slmaxlen_cm,
                       sh.slunit
                  FROM shoe_data sh, unit un
                 WHERE sh.slunit = un.un_name) rsh,
               (SELECT s.sl_name,
                       s.sl_avail,
                       s.sl_color,
                       s.sl_len,
                       s.sl_unit,
                       s.sl_len * u.un_fact AS sl_len_cm
                  FROM shoelace_data s, unit u
                 WHERE s.sl_unit = u.un_name) rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

This might look inefficient, but the planner will collapse this into a single-level query tree by pulling up the subqueries, and then it will plan the joins just as if we'd written them out manually. So collapsing the query tree is an optimization that the rewrite system doesn't have to concern itself with.

39.2.2. View Rules in Non-SELECT Statements #

Two details of the query tree aren't touched in the description of view rules above. These are the command type and the result relation. In fact, the command type is not needed by view rules, but the result relation may affect the way in which the query rewriter works, because special care needs to be taken if the result relation is a view.

There are only a few differences between a query tree for a SELECT and one for any other command. Obviously, they have a different command type and for a command other than a SELECT, the result relation points to the range-table entry where the result should go. Everything else is absolutely the same. So having two tables t1 and t2 with columns a and b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

are nearly identical. In particular:

  • The range tables contain entries for the tables t1 and t2.

  • The target lists contain one variable that points to column b of the range table entry for table t2.

  • The qualification expressions compare the columns a of both range-table entries for equality.

  • The join trees show a simple join between t1 and t2.

The consequence is, that both query trees result in similar execution plans: They are both joins over the two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner and the final query tree will read as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

But there is a little problem in UPDATE: the part of the executor plan that does the join does not care what the results from the join are meant for. It just produces a result set of rows. The fact that one is a SELECT command and the other is an UPDATE is handled higher up in the executor, where it knows that this is an UPDATE, and it knows that this result should go into table t1. But which of the rows that are there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE) statements: the current tuple ID (CTID). This is a system column containing the file block number and position in the block for the row. Knowing the table, the CTID can be used to retrieve the original row of t1 to be updated. After adding the CTID to the target list, the query actually looks like:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. Old table rows aren't overwritten, and this is why ROLLBACK is fast. In an UPDATE, the new result row is inserted into the table (after stripping the CTID) and in the row header of the old row, which the CTID pointed to, the cmax and xmax entries are set to the current command counter and current transaction ID. Thus the old row is hidden, and after the transaction commits the vacuum cleaner can eventually remove the dead row.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There is no difference.

39.2.3. The Power of Views in PostgreSQL #

The above demonstrates how the rule system incorporates view definitions into the original query tree. In the second example, a simple SELECT from one view created a final query tree that is a join of 4 tables (unit was used twice with different names).

The benefit of implementing views with the rule system is that the planner has all the information about which tables have to be scanned plus the relationships between these tables plus the restrictive qualifications from the views plus the qualifications from the original query in one single query tree. And this is still the situation when the original query is already a join over views. The planner has to decide which is the best path to execute the query, and the more information the planner has, the better this decision can be. And the rule system as implemented in PostgreSQL ensures that this is all information available about the query up to that point.

39.2.4. Updating a View #

What happens if a view is named as the target relation for an INSERT, UPDATE, DELETE, or MERGE? Doing the substitutions described above would give a query tree in which the result relation points at a subquery range-table entry, which will not work. There are several ways in which PostgreSQL can support the appearance of updating a view, however. In order of user-experienced complexity those are: automatically substitute in the underlying table for the view, execute a user-defined trigger, or rewrite the query per a user-defined rule. These options are discussed below.

If the subquery selects from a single base relation and is simple enough, the rewriter can automatically replace the subquery with the underlying base relation so that the INSERT, UPDATE, DELETE, or MERGE is applied to the base relation in the appropriate way. Views that are simple enough for this are called automatically updatable. For detailed information on the kinds of view that can be automatically updated, see CREATE VIEW.

Alternatively, the operation may be handled by a user-provided INSTEAD OF trigger on the view (see CREATE TRIGGER). Rewriting works slightly differently in this case. For INSERT, the rewriter does nothing at all with the view, leaving it as the result relation for the query. For UPDATE, DELETE, and MERGE, it's still necessary to expand the view query to produce the old rows that the command will attempt to update, delete, or merge. So the view is expanded as normal, but another unexpanded range-table entry is added to the query to represent the view in its capacity as the result relation.

The problem that now arises is how to identify the rows to be updated in the view. Recall that when the result relation is a table, a special CTID entry is added to the target list to identify the physical locations of the rows to be updated. This does not work if the result relation is a view, because a view does not have any CTID, since its rows do not have actual physical locations. Instead, for an UPDATE, DELETE, or MERGE operation, a special wholerow entry is added to the target list, which expands to include all columns from the view. The executor uses this value to supply the old row to the INSTEAD OF trigger. It is up to the trigger to work out what to update based on the old and new row values.

Another possibility is for the user to define INSTEAD rules that specify substitute actions for INSERT, UPDATE, and DELETE commands on a view. These rules will rewrite the command, typically into a command that updates one or more tables, rather than views. That is the topic of Section 39.4. Note that this will not work with MERGE, which currently does not support rules on the target relation other than SELECT rules.

Note that rules are evaluated first, rewriting the original query before it is planned and executed. Therefore, if a view has INSTEAD OF triggers as well as rules on INSERT, UPDATE, or DELETE, then the rules will be evaluated first, and depending on the result, the triggers may not be used at all.

Automatic rewriting of an INSERT, UPDATE, DELETE, or MERGE query on a simple view is always tried last. Therefore, if a view has rules or triggers, they will override the default behavior of automatically updatable views.

If there are no INSTEAD rules or INSTEAD OF triggers for the view, and the rewriter cannot automatically rewrite the query as an update on the underlying base relation, an error will be thrown because the executor cannot update a view as such.