Re: DELETE with filter on ctid

Список
Период
Сортировка
От Spiegelberg, Greg
Тема Re: DELETE with filter on ctid
Дата
Msg-id 82E74D266CB9B44390D3CCE44A781ED90B6ADD@POSTOFFICE.cranel.local
обсуждение исходный текст
Ответ на Re: DELETE with filter on ctid  (Tom Lane)
Ответы Re: DELETE with filter on ctid  (Tom Lane)
Список pgsql-performance
Дерево обсуждения
DELETE with filter on ctid  ("Spiegelberg, Greg", )
 Re: DELETE with filter on ctid  (Tom Lane, )
  Re: DELETE with filter on ctid  ("Spiegelberg, Greg", )
   Re: DELETE with filter on ctid  (Tom Lane, )
 Re: DELETE with filter on ctid  ("Craig A. James", )
  Re: DELETE with filter on ctid  ("Spiegelberg, Greg", )
Tom et al,

Sometimes it takes a look from someone on the outside to get the job
done right.

Below is, I believe, everything pertinent to this problem.  First is the
table in question, second is the problematic and original query, and
final is the transaction that I have working today with the CTID
implementation.

I would welcome any feedback.

TIA,
Greg



cranel=# \d sid2.data_id_table
        Table "sid2.data_id_table"
   Column    |  Type   |   Modifiers
-------------+---------+---------------
 point_id    | bigint  |
 dtype_id    | bigint  |
 segment_id  | bigint  |
 key1_id     | bigint  | not null
 key2_id     | bigint  |
 data_id     | bigint  | not null
 deleted     | boolean | default false
 removed     | boolean | default false
 added       | boolean | default false
 persist     | boolean | default false
Indexes:
    "data_id_table_data_id_indx" btree (data_id)
    "data_id_table_dtype_id_indx" btree (dtype_id)
    "data_id_table_dtype_ss_id_indx" btree (dtype_id, point_id)
    "data_id_table_key1_id_indx" btree (key1_id)
    "data_id_table_key2_id_indx" btree (key2_id)
    "data_id_table_mod_dtype_ss_id_indx" btree (segment_id, dtype_id,
point_id)
    "data_id_table_segment_id_indx" btree (segment_id)
    "data_id_table_point_id_indx" btree (point_id)

cranel=# explain analyze
DELETE FROM sid2.data_id_table AS dd
 USING public.points AS ss,
       (SELECT markeddel.*
          FROM (SELECT d.*
                  FROM sid2.data_id_table d,public.points s
                 WHERE s.systems_id=2 AND s.id<2 AND s.permpoint=FALSE
AND s.id=d.point_id AND d.persist=FALSE
                   AND d.dtype_id=3) AS markeddel
               JOIN
               (SELECT DISTINCT ON (d.key1_id,d.key2_id) d.*
                  FROM sid2.data_id_table d,public.points s
                 WHERE s.systems_id=2 AND s.id<=2 AND s.id=d.point_id
AND d.dtype_id=3
                 ORDER BY d.key1_id,d.key2_id,d.point_id DESC) AS rollup
               ON
(markeddel.key1_id,markeddel.key2_id)=(rollup.key1_id,rollup.key2_id)
         WHERE markeddel.point_id<>rollup.point_id) ru
 WHERE ss.systems_id=2 AND ss.id<2 AND ss.permpoint=FALSE AND
ss.id=dd.point_id
   AND dd.persist=FALSE AND dd.dtype_id=3
   AND
(dd.point_id,dd.key1_id,dd.key2_id)=(ru.point_id,ru.key1_id,ru.key2_id);

QUERY PLAN

------------------------------------------------------------------------
------------------------------------------------------------------------
------------------------------------
 Nested Loop  (cost=1037.06..1130.46 rows=1 width=6) (actual
time=33291.639..678047.543 rows=564 loops=1)
   Join Filter: ((dd.point_id = d.point_id) AND (d.point_id <>
rollup.point_id))
   ->  Merge Join  (cost=1028.10..1117.47 rows=1 width=70) (actual
time=1775.971..3721.991 rows=156750 loops=1)
         Merge Cond: ((rollup.key1_id = dd.key1_id) AND (rollup.key2_id
= dd.key2_id))
         ->  Unique  (cost=629.66..659.24 rows=3944 width=52) (actual
time=896.293..1571.591 rows=156779 loops=1)
               ->  Sort  (cost=629.66..639.52 rows=3944 width=52)
(actual time=896.285..1080.444 rows=157342 loops=1)
                     Sort Key: d.key1_id, d.key2_id, d.point_id
                     ->  Nested Loop  (cost=0.00..394.10 rows=3944
width=52) (actual time=8.846..529.901 rows=157352 loops=1)
                           ->  Seq Scan on points s  (cost=0.00..1.72
rows=1 width=8) (actual time=0.064..0.096 rows=2 loops=1)
                                 Filter: ((systems_id = 2) AND (id <=
2))
                           ->  Index Scan using
data_id_table_point_id_indx on data_id_table d  (cost=0.00..339.79
rows=4207 width=52) (actual time=4.649..155.174 rows=78676 loops=2)
                                 Index Cond: (s.id = d.point_id)
                                 Filter: (dtype_id = 3)
         ->  Sort  (cost=398.44..398.64 rows=82 width=46) (actual
time=879.658..1109.830 rows=156750 loops=1)
               Sort Key: dd.key1_id, dd.key2_id
               ->  Nested Loop  (cost=0.00..395.83 rows=82 width=46)
(actual time=5.197..549.873 rows=156750 loops=1)
                     ->  Nested Loop  (cost=0.00..3.45 rows=1 width=16)
(actual time=0.055..0.107 rows=1 loops=1)
                           Join Filter: (ss.id = s.id)
                           ->  Seq Scan on points ss  (cost=0.00..1.72
rows=1 width=8) (actual time=0.037..0.052 rows=1 loops=1)
                                 Filter: ((systems_id = 2) AND (id < 2)
AND (NOT permpoint))
                           ->  Seq Scan on points s  (cost=0.00..1.72
rows=1 width=8) (actual time=0.006..0.039 rows=1 loops=1)
                                 Filter: ((systems_id = 2) AND (id < 2)
AND (NOT permpoint))
                     ->  Index Scan using data_id_table_point_id_indx on
data_id_table dd  (cost=0.00..339.79 rows=4207 width=30) (actual
time=5.135..342.406 rows=156750 loops=1)
                           Index Cond: (ss.id = dd.point_id)
                           Filter: ((NOT persist) AND (dtype_id = 3))
   ->  Bitmap Heap Scan on data_id_table d  (cost=8.96..12.97 rows=1
width=24) (actual time=4.289..4.290 rows=1 loops=156750)
         Recheck Cond: ((d.key1_id = rollup.key1_id) AND (d.key2_id =
rollup.key2_id))
         Filter: ((NOT persist) AND (dtype_id = 3))
         ->  BitmapAnd  (cost=8.96..8.96 rows=1 width=0) (actual
time=4.280..4.280 rows=0 loops=156750)
               ->  Bitmap Index Scan on data_id_table_key1_id_indx
(cost=0.00..4.32 rows=4 width=0) (actual time=0.020..0.020 rows=31
loops=156750)
                     Index Cond: (d.key1_id = rollup.key1_id)
               ->  Bitmap Index Scan on data_id_table_key2_id_indx
(cost=0.00..4.38 rows=13 width=0) (actual time=4.254..4.254 rows=26187
loops=156750)
                     Index Cond: (d.key2_id = rollup.key2_id)
 Total runtime: 678063.873 ms
(34 rows)

cranel=# \timing
Timing is on.
cranel=# BEGIN;
BEGIN
Time: 0.340 ms

cranel=# CREATE INDEX data_id_table_ctid_idx ON
sid2.data_id_table(ctid);
CREATE INDEX
Time: 648.911 ms

cranel=# explain analyze
DELETE FROM sid2.data_id_table AS dd
 USING public.points AS ss,
       (SELECT markeddel.ctid
          FROM (SELECT d.ctid,d.*
                  FROM sid2.data_id_table d,public.points s
                 WHERE s.systems_id=2
                   AND s.id<2
                   AND s.permpoint=FALSE
                   AND s.id=d.point_id
                   AND d.persist=FALSE
                   AND d.dtype_id=3) AS markeddel
               JOIN
               (SELECT DISTINCT ON (d.key1_id,d.key2_id) d.*
                  FROM sid2.data_id_table d,public.points s
                 WHERE s.systems_id=2
                   AND s.id<=2
                   AND s.id=d.point_id
                   AND d.dtype_id=3
                 ORDER BY d.key1_id,d.key2_id,d.point_id DESC) AS rollup
               ON
(markeddel.key1_id,markeddel.key2_id)=(rollup.key1_id,rollup.key2_id)
         WHERE markeddel.point_id<>rollup.point_id) ru
 WHERE ss.systems_id=2
   AND ss.id<2
   AND ss.permpoint=FALSE
   AND ss.id=dd.point_id
   AND dd.persist=FALSE
   AND dd.dtype_id=3
   AND dd.ctid=ru.ctid;

QUERY PLAN

------------------------------------------------------------------------
------------------------------------------------------------------------
------------------------------------------
 Nested Loop  (cost=1259.33..1378.37 rows=1 width=6) (actual
time=1807.429..2625.722 rows=562 loops=1)
   ->  Nested Loop  (cost=1259.33..1378.08 rows=1 width=14) (actual
time=1807.372..2619.592 rows=562 loops=1)
         ->  Merge Join  (cost=1259.33..1377.66 rows=1 width=6) (actual
time=1807.228..2606.901 rows=562 loops=1)
               Merge Cond: ((rollup.key1_id = d.key1_id) AND
(rollup.key2_id = d.key2_id))
               Join Filter: (d.point_id <> rollup.point_id)
               ->  Unique  (cost=629.66..659.24 rows=3944 width=52)
(actual time=911.409..1271.121 rows=156779 loops=1)
                     ->  Sort  (cost=629.66..639.52 rows=3944 width=52)
(actual time=911.403..1024.775 rows=157342 loops=1)
                           Sort Key: d.key1_id, d.key2_id, d.point_id
                           ->  Nested Loop  (cost=0.00..394.10 rows=3944
width=52) (actual time=6.036..548.119 rows=157352 loops=1)
                                 ->  Seq Scan on points s
(cost=0.00..1.72 rows=1 width=8) (actual time=0.114..0.137 rows=2
loops=1)
                                       Filter: ((systems_id = 2) AND (id
<= 2))
                                 ->  Index Scan using
data_id_table_point_id_indx on data_id_table d  (cost=0.00..339.79
rows=4207 width=52) (actual time=3.216..155.284
rows=78676 loops=2)
                                       Index Cond: (s.id = d.point_id)
                                       Filter: (dtype_id = 3)
               ->  Sort  (cost=629.66..639.52 rows=3944 width=30)
(actual time=875.213..980.618 rows=156750 loops=1)
                     Sort Key: d.key1_id, d.key2_id
                     ->  Nested Loop  (cost=0.00..394.10 rows=3944
width=30) (actual time=5.864..553.290 rows=156750 loops=1)
                           ->  Seq Scan on points s  (cost=0.00..1.72
rows=1 width=8) (actual time=0.022..0.053 rows=1 loops=1)
                                 Filter: ((systems_id = 2) AND (id < 2)
AND (NOT permpoint))
                           ->  Index Scan using
data_id_table_point_id_indx on data_id_table d  (cost=0.00..339.79
rows=4207 width=30) (actual time=5.831..355.139 rows=156750 loops=1)
                                 Index Cond: (s.id = d.point_id)
                                 Filter: ((NOT persist) AND (dtype_id =
3))
         ->  Index Scan using data_id_table_ctid_idx on data_id_table dd
(cost=0.00..0.41 rows=1 width=14) (actual time=0.017..0.019 rows=1
loops=562)
               Index Cond: (dd.ctid = d.ctid)
               Filter: ((NOT persist) AND (dtype_id = 3))
   ->  Index Scan using points_pkey on points ss  (cost=0.00..0.28
rows=1 width=8) (actual time=0.005..0.007 rows=1 loops=562)
         Index Cond: ((ss.id < 2) AND (ss.id = dd.point_id))
         Filter: ((systems_id = 2) AND (NOT permpoint))
 Total runtime: 2641.820 ms
(29 rows)
Time: 2652.940 ms

cranel=# DROP INDEX data_id_table_ctid_idx;
DROP INDEX
Time: 33.653 ms

cranel=# DELETE FROM sid2.data_id_table AS dd WHERE dd.point_id=2 AND
dd.dtype_id=3 AND dd.deleted AND NOT dd.persist;
DELETE 0
Time: 0.960 ms

cranel=# COMMIT;
Time: 20.500 ms






-----Original Message-----
From: Tom Lane [mailto:]
Sent: Monday, April 09, 2007 4:55 PM
To: Spiegelberg, Greg
Cc: 
Subject: Re: [PERFORM] DELETE with filter on ctid

"Spiegelberg, Greg" <> writes:
> We have a query which generates a small set of rows (~1,000) which are
> to be used in a DELETE on the same table.  The problem we have is that
> we need to join on 5 different columns and it takes far too long.  I
> have a solution but I'm not sure it's the right one.  Instead of
joining
> on 5 columns in the DELETE the join uses the ctid column.

> BEGIN;
> CREATE INDEX gregs_table_ctid_idx ON gregs_table(ctid);
> DELETE FROM gregs_table gt
>    USING (SELECT ctid FROM gregs_table WHERE ...) as s
>    WHERE gt.ctid=s.ctid;
> DROP INDEX gregs_table_ctid_idx;
> COMMIT;

Forget the index, it's useless here (hint: ctid is a physical address).
I'm wondering though why you don't just transpose the subquery's WHERE
condition into the DELETE's WHERE?  Or is this example oversimplified?

            regards, tom lane

В списке pgsql-performance по дате отправления:

Предыдущее
От: Tom Lane
Дата:
Сообщение: Re: join to view over custom aggregate seems like it should be faster
Следующее
От: "Michael Dengler"
Дата:
Сообщение: Do I need to rebuild php-pgsql for 8.2.3