
6/12/2014 Setting Parameters

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/config-setting.html 1/5

PostgreSQL 9.4beta1 Documentation
Prev Up Chapter 18. Server Configuration Next

18.1. Setting Parameters

18.1.1. Parameter Names and Values

All parameter names are case-insensitive. Every parameter takes a value of one of
five types: Boolean, integer, floating point, string or enum.

Boolean: Values can be written as on, off, true, false, yes, no, 1, 0 (all case-
insensitive) or any unambiguous prefix of these.

String: Enclose the value in single-quote. Values are case-insensitive. If multiple
values are allowed separate them with commas.

Numeric (integer and floating point): Do not use single-quotes (unless otherwise
required) or thousand separators. Typically memory or time related - see
comments in that section for detail.

Zero (special case): If the supplied value is zero the effective value will be
parameter specific; though it will be zero unless otherwise noted.

Numeric or String with Unit: Memory & Time. Both of these have an implicit unit,
which is either kilobytes, blocks (typically eight kilobytes), milliseconds,
seconds, or minutes. An numeric value will use the default, which can be found
by referencing pg_settings.unit. For convenience, a different unit can also be
specified explicitly via a string value. It is case-sensitive and may include a
space between the value and the unit

Valid memory units are kB (kilobytes), MB (megabytes), GB (gigabytes), and
TB (terabytes). The multiplier for memory units is 1024, not 1000.

Valid time units are ms (milliseconds), s (seconds), min (minutes), h (hours),
and d (days).

Parameters with default integer units cannot have values with smaller
resolution. Any fractional part is silently ignored.

Example: log_rotation_age; integer minutes and will not accept seconds.
Setting it to '10s' will silently round down to zero and disable the feature.

"enum": These specified in the same way as string parameters, but are
restricted to a limited set of values that can be queried from
pg_settings.enumvals:

SELECT name, setting, enumvals FROM pg_settings WHERE enumvals IS NOT NULL;

Enum parameter values are case-insensitive.

18.1.2. Parameter Interaction via Configuration File

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/index.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config-file-locations.html

6/12/2014 Setting Parameters

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/config-setting.html 2/5

The primary way to set these parameters is to edit the file postgresql.conf, which is
normally kept in the data directory. (A default copy is installed there when the
database cluster directory is initialized.) An example of what this file might look like
is:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

One parameter is specified per line. The equal sign between name and value is
optional. Whitespace is insignificant and blank lines are ignored. Hash marks (#)
designate the remainder of the line as a comment. Parameter values that are not
simple identifiers or numbers must be single-quoted. To embed a single quote in a
parameter value, write either two quotes (preferred) or backslash-quote.

Parameters set in this way provide the global default value for the cluster. The
setting actually seen by the connecting user or issued statement will be this value
unless it is overridden. The next sections describe ways in which the administrator or
user can override these defaults.

The configuration file is reread whenever the main server process receives a SIGHUP
signal; this is most easily done by running pg_ctl reload from the command-line or by
calling the SQL function pg_reload_conf(). The main server process also propagates
this signal to all currently running server processes so that existing sessions also get
the new value. Alternatively, you can send the signal to a single server process
directly. Some parameters can only be set at server start; any changes to their
entries in the configuration file will be ignored until the server is restarted. Invalid
parameter settings in the configuration file are likewise ignored (but logged) during
SIGHUP processing.

18.1.3. Parameter Interaction via SQL

PostgreSQL provides three SQL commands to establish configuration defaults that
override those configured globally. The evaluation of these defaults occurs at the
beginning of a new session, upon the user issuing DISCARD, or if the server forces
the session to reload it configuration after a SIGHUP

The ALTER SYSTEM command provides an SQL-accessible means to change the
global defaults. Since the server must be running to execute SQL the timing of
when the actual value takes effect depends on the variable being changed - but
in no case is the current session affected nor will any change take effect before
the next configuration reload (SIGHUP) by the server.

The ALTER DATABASE command allows the database administrator to override
global settings on a per-database basis.

The ALTER ROLE command allows the database administrator to override both
global and per-database settings with user-specific values.

Once a client connects to the database PostgreSQL provides two additional SQL
commands to interact with session-local system configuration. Both of these

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-discard.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-altersystem.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-alterdatabase.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-alterrole.html

6/12/2014 Setting Parameters

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/config-setting.html 3/5

commands have equivalent system administration functions.

The SHOW command allows inspection of the current value of all parameters.
The corresponding function is current_setting(setting_name text).

The SET command allows modification of the current value some parameters.
The corresponding function is set_config(setting_name, new_value, is_local).

Both SELECT and UPDATE can be issued against the virtual table pg_settings to view
and affect the session-local configuration. Its definition can be found in Section
48.67.

SELECT-ing against this relation is the equivalent of issuing SHOW but provides
considerably more detail as well as allowing for joining against other relations
and specifying filter criteria.

UPDATE-ing against this relation, specifically the setting column is the
equivalent of issuing SET though all values must be single-quoted.

Note that the eqivalent of

SET configuration_parameter TO DEFAULT;

would be:

UPDATE pg_settings SET setting = reset_val WHERE name = 'configuration_parameter';

18.1.4. Parameter Interaction via Shell

In addition to setting global defaults or attaching overrides at the database or role
scope , you may choose to provide them to PostgreSQL via shell facilities. Both the
server and libpq client library have defined ways to accept parameter values via the
shell.

On the server, command-line options can passed to the postgres command
directly via the "-c" parameter.

postgres -c log_connections=yes -c log_destination='syslog'

Settings provided this way override those resolved globally (via postgresql.conf
or ALTER SYSTEM) but are otherwise treated as being global for the purpose of
database and role overriding.

Typically, a production system will be adminstered via its postgresql.conf file.
Use of this mechanism is suggested only for development and testing.

On the libpq-client, command-line options are specified using the PGOPTIONS
environment variable. Upon connecting to a server the contents of this variable
are sent to the server as if they were being executed via a SQL SET at the
beginning of the session.

However, the format for PGOPTIONS is similar to that provided when launching
postgres command. Specifically, the '-c' flag specification is part of the value.

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-show.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-set.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/view-pg-settings.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-select.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-update.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/sql-set.html

6/12/2014 Setting Parameters

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/config-setting.html 4/5

env PGOPTIONS="-c geqo=off -c statement_timeout='5 min'" psql

Other clients and libraries may provide their own mechanisms, via the shell or
otherwise, that allow the user to setup the session configuration without
requiring the user to issue SQL commands. Please see their documentation for
details.

18.1.5. Configuration File Includes

In addition to parameter settings, the postgresql.conf file can contain include
directives, which specify another file to read and process as if it were inserted into
the configuration file at this point. This feature allows a configuration file to be
divided into physically separate parts. Include directives simply look like:

include 'filename'

If the file name is not an absolute path, it is taken as relative to the directory
containing the referencing configuration file. Inclusions can be nested.

There is also an include_if_exists directive, which acts the same as the include
directive, except for the behavior when the referenced file does not exist or cannot be
read. A regular include will consider this an error condition, but include_if_exists
merely logs a message and continues processing the referencing configuration file.

The postgresql.conf file can also contain include_dir directives, which specify an entire
directory of configuration files to include. It is used similarly:

 include_dir 'directory'

Non-absolute directory names follow the same rules as single file include directives:
they are relative to the directory containing the referencing configuration file. Within
that directory, only non-directory files whose names end with the suffix .conf will be
included. File names that start with the . character are also excluded, to prevent
mistakes as they are hidden on some platforms. Multiple files within an include
directory are processed in file name order. The file names are ordered by C locale
rules, i.e. numbers before letters, and uppercase letters before lowercase ones.

Include files or directories can be used to logically separate portions of the database
configuration, rather than having a single large postgresql.conf file. Consider a
company that has two database servers, each with a different amount of memory.
There are likely elements of the configuration both will share, for things such as
logging. But memory-related parameters on the server will vary between the two. And
there might be server specific customizations, too. One way to manage this situation
is to break the custom configuration changes for your site into three files. You could
add this to the end of your postgresql.conf file to include them:

 include 'shared.conf'
 include 'memory.conf'
 include 'server.conf'

All systems would have the same shared.conf. Each server with a particular amount of
memory could share the same memory.conf; you might have one for all servers with

6/12/2014 Setting Parameters

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/config-setting.html 5/5

8GB of RAM, another for those having 16GB. And finally server.conf could have truly
server-specific configuration information in it.

Another possibility is to create a configuration file directory and put this information
into files there. For example, a conf.d directory could be referenced at the end
ofpostgresql.conf:

 include_dir 'conf.d'

Then you could name the files in the conf.d directory like this:

 00shared.conf
 01memory.conf
 02server.conf

This shows a clear order in which these files will be loaded. This is important because
only the last setting encountered when the server is reading its configuration will be
used. Something set in conf.d/02server.conf in this example would override a value
set in conf.d/01memory.conf.

You might instead use this configuration directory approach while naming these files
more descriptively:

 00shared.conf
 01memory-8GB.conf
 02server-foo.conf

This sort of arrangement gives a unique name for each configuration file variation.
This can help eliminate ambiguity when several servers have their configurations all
stored in one place, such as in a version control repository. (Storing database
configuration files under version control is another good practice to consider).

Prev Home Next
Server Configuration Up File Locations

file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/index.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config-file-locations.html
file:///E:/Linux1004Workarea/git-postgresql-org/postgresql/doc/src/sgml/html/runtime-config.html

