
January 26, 2022 page 1

Enhancing PL/pgSQL to support packages
PL/pgSQL is an imperative procedural programming language. Many such languages support
constructs to group related functions and procedures into a single containing unit. (I’ll hereinafter use
the term subprogram to mean either function or procedure. It’s unimportant that some languages don’t
even use the keyword procedure.) For example, Python lets you group a main program and the helper
subprograms that it uses within one single file so the these units can refer to each other without
qualified names. It also lets you group generic helper subprograms into one file so that you can then
use these helpers from subprograms grouped in other files, using suitably qualified names.

I’ll use the term module in this essay as a generic term of art for the grouping construct in any language
that supports such a construct. A module, across a range of languages, usually supports the declaration
of so-called module-global variables that are usable from all of the contained subprograms but (maybe
according to programmer choice) are inaccessible from outside of the module. Moreover, such
module-global variables hold their state when the point of execution leaves the module and then, later,
comes back to it. (This behavior is notably different from how the local variables that are declared
within a subprogram behave.) Another common notion allows just an identified subset of the module’s
subprograms to be externally visible, and thereby to define its API, while the other contained
subprograms remain firmly hidden behind the API. A module has a name, a purpose, and is the basic
unit of code management, version control, and deployment.

A “library” notion goes hand-in-hand with a language’s module construct. And application
programmer productivity, in many languages, is hugely enhanced by library modules that ship with the
language system—each for a particular generic purpose. Additionally, modules for the language in
question are often available from third parties.

But PL/pgSQL has no such module language construct. All it has is individually created functions and
procedures. It is possible to establish a set of related PL/pgSQL subprograms with a single dedicated
user and/or in a single dedicated schema.

(It is possible to create a PostgreSQL extension that exposes several PL/pgSQL subprograms. They
might be implemented in PL/pgSQL, or in another language like C. But if PL/pgSQL is the
implementation language, then extension developers feel the absence of a module construct in just the
same way that they do when using no more than create function and create procedure.)

PL/pgSQL functions and procedures can be compared to their PL/SQL counterparts in Oracle
Database. They’re similar in syntax and semantics—and especially in that they support SQL
statements as a particular kind of statement within the superset of the programming language’s other
statements, and that they execute within the same database session that executes SQL. But PL/SQL
supports the module construct that PL/pgSQL lacks. It’s called a package—comprised of a package
specification (hereinafter the spec) and a package body (hereinafter the body).

In this essay, I take a simple use case that can be implemented both in Oracle Database and in
PostgreSQL. I show how its two user-facing subprograms can be implemented in a single PL/SQL
package which hides a couple of helpers in the body. It also uses package state to advantage. And I
show how the code would look if it were mapped to PL/pgSQL syntax using an intuitive extension to

https://en.wikipedia.org/wiki/Imperative_programming#Imperative_and_procedural_programming

January 26, 2022 page 2

the way that a PL/SQL function of procedure is mapped to its PL/pgSQL counterpart. Then I show
how you must implement it today in the absence of a PL/pgSQL module construct. I call out the
various ways in which this implementation suffers because of that lack.

Why use PL/pgSQL stored procedures at all?

Here are three points on the spectrum of possible answers.

• Just say “no”. Never implement user-defined code that executes inside the database.

I’ve certainly heard this viewpoint vigorously expressed. I’ll take the fact that PL/pgSQL is
supported at all as reason enough not to debate these nay-sayers.

• Use PL/pgSQL functions sparingly to implement what might have been SQL built-in functions.

Greatest common factor is a good example. (I do realize that PG 13 brought the gcd() built-in. But this
only strengthens the usefulness of the example.)

• Use PL/pgSQL subprograms to define the entire API, for database clients, of the overall
application’s use of the database.

This approach relies on a designed set of users where some own schema objects and one, or a few,
others own no objects but can use the subprograms that define the API. The approach ensures that
database clients aren’t able even to discover the names of the tables, table columns, indexes,
constraints, and so on that lie behind the API. This implies that clients mustn’t be able to read the
code of the PL/pgSQL implementations. This end-point of the spectrum represents the full-on
adherence to the principles of modular software design. It regards the database as one component
in the modular decomposition of the overall multitier application. Tautologically, the database
component must expose its functionality via a business-purpose-oriented API and must hide all the
implementation details behind that API. I’ll call this the hard shell approach just to save words later
on.

I realize that some designers are vigorous advocates of the hard shell approach and that others
vigorously oppose it. This essay’s purpose is met simply by saying that PostgreSQL must allow those
who favor the hard shell approach to implement it successfully.

The use case that the code in this essay implements

I’ve chosen a simple, but fairly realistic use case. Suppose that you want to execute one or several
database calls from a client in a single session, and that you want to record the total elapsed time.
Suppose that you don’t want to change the code of what you call to add timing instrumentation.
(Never mind how feasible such intervention might be.) If your client is, for example, a Python
program that makes all of the database calls of interest, then you can easily read a clock, record what
it says, read it again later, and do your arithmetic—all in python code.

So, for the sake of this use case, imagine that the client is psql (or, with Oracle Database, SQL*Plus).
Think, for example, of a psql script that calls child scripts and that executes a mixture of DDL
statements, DML statements, and statements of other kinds. You decide that you want to implement
the timer with a parameterless procedure to reset and start a stopwatch and a parameterless function
to read it:
procedure: stopwatch.start();
function: stopwatch.reading();

January 26, 2022 page 3

It’s implicit that start() needs to note the wall clock time at the moment it’s invoked, using a suitable
memo, and that reading() needs to note the wall clock time, again, at the moment it’s invoked and then
to read the start time from the memo to allow the elapsed time to be computed by subtraction.

In Oracle Database, stopwatch is the name of a package for which you create a public synonym. In
PostgreSQL, stopwatch is the name of a schema that you put on the path of a user that needs to use it.

Regard the use of a path in PostgreSQL and of a public synonym in Oracle Database as devices that
make the syntax less verbose when you start and stop the stopwatch and that thereby emphasize the
similarity of the approaches in the different environments as they appear to the end user. Opinions
vary about the advisability of this approach and some developers prefer always to use fully qualified
names. That debate is irrelevant for this essay’s purpose.

A note about the code

The PL/SQL implementation for Oracle Database and the currently runnable PL/pgSQL
implementation for PostgreSQL are included with this essay as tested, re-runnable scripts—to be
executed, respectively, using SQL*Plus and psql. They produce exactly the same results, to a spool file,
in the two environments (within the limits of the expected stochastic variability of time
measurements).

You can read the scripts to see the details of the implementations. However, these details aren’t the
point. Rather, the point is the structure: how the code is organized. This essay, therefore, shows the
structure but elides the low-level code details.

The runnable PL/pgSQL implementation follows this advice:

Instead of packages, use schemas to organize your functions into groups.

from the PostgreSQL documentation section 43.13. Porting from Oracle PL/SQL. However, it
doesn’t follow the second part of the advice:

Since there are no packages, there are no package-level variables either. This is somewhat annoying. You can keep
per-session state in temporary tables instead.

A PostgreSQL temporary table’s metadata has only session duration and therefore it must be created
afresh in every newly-started session. But there is no way to make a database trigger fire on session
creation and so client-side session-startup code must be used. This is uncomfortable because it
delegates the responsibility for the proper behavior of the within-database stopwatch to the client.

Instead, the runnable implementation uses the entity that you get by executing this SQL statement:

I’ll use the term user-defined run-time parameter for this entity. I made up the names stopwatch and
start_moment and followed what seems to be a recommended practice of introducing the informal
namespace stopwatch so that I can then invent names of “variables” within it, like start_moment, without
risking collision with names of “variables” in other informal namespaces. This approach has the
drawback that only text values can be stored this way and so, in the present use case, values must be
typecast on the way in and again on the way out.

set stopwatch.start_moment to <the text representation of a number>;

https://www.postgresql.org/docs/current/plpgsql-porting.html

January 26, 2022 page 4

Of course, my sketch of a straw-man PL/pgSQL package implementation cannot be run. But the
low-level code details would be essentially identical to their counterparts in the runnable
implementation that uses free-standing subprograms. They would differ only in how the
session-global state is accessed. The strawman PL/pgSQL package implementation replaces the use
of the user-defined run-time parameter with the strawman’s package body global variable.

The helper function fmt(n in …, template in …) return …

The ellipses stand for data types that are functionally equivalent in Oracle Database and PostgreSQL
but that have different names. In Oracle Database, n is number; and template and the return value are
both varchar2. In PostgreSQL, n is numeric; and template and the return value are both text. As it happens,
the implementation (just a single statement), is spelled identically in both environments:

The pedagogy here is that this trivial encapsulation is invoked at ten different sites in the function
that uses it, thereby making that code noticeably more compact and therefore easier to proof read.
Yet it’s impossible to claim that fmt() might be generically useful. (At least, take it as standing for such
a function.) So it calls out to be hidden from general sight and to be impossible to invoke except
where it’s needed. In Oracle Database, because it happens to be used only by a single subprogram, the
common practice is to write it as an inner function in the declaration section of the caller. It would be
nice if PL/pgSQL, too, supported inner subprograms.

Arguably, the case for supporting inner subprograms is separable from the case for supporting
packages. As it happens, the structure of a package body in PL/SQL is identical to that of a
parameterless procedure: each has a declaration section that accommodates both variables and
subprograms. For this reason, my strawman sketch of the PL/pgSQL package implementation has
fmt() as an inner function, too. In both the runnable PL/SQL implementation and the strawman
PL/pgSQL package implementation, fmt() is defined as an inner function in duration_as_text()’s
declaration section.

The helper function duration_as_text(t in …) return …

This is a classic pretty-print function. It returns the input duration with sensible precision and units
according to its size. Even though the scheme is well known in many contexts (for example for file
sizes in bytes, KB, MB, GB, and so on), the particular design here is specific to the present use case and
deserves, therefore, to be hidden from general sight.

In Oracle Database, n is number; and the return value is varchar2. In PostgreSQL, n is numeric; and the
return value is text. The implementation is identical in both environments, and the transliteration from
one to the other could be done mechanically. Standalone tests show that the PL/SQL
implementation and the PL/pgSQL implementation produce identical results over an appropriately
wide range of input values. (To test the PL/SQL implementation you must, temporarily, expose the
function in the spec.)

return ltrim(to_char(n, template));

January 26, 2022 page 5

Implementing the stopwatch in Oracle Database using a package

Here is the DDL that creates the spec:

And here is the elided DDL that creates the body:

Finally users other than stopwatch_owner will need the execute privilege on it, like this:

If you say on package stopwatch_owner.stopwatch, then you get a syntax error. (Oracle Database and
PostgreSQL differ here.) But the effect is to allow the grantee to access the elements that the spec
exposes: its subprograms, variables, and the ability to read the text that defines it—along with
Oracle-specific things like types and exceptions that the spec declares. Not even the owner can
reference elements that are declared in the body from outside of the body. But it can read the text that
defines the body. Users other than the owner can never read the text that defines the body. This is
regarded as a critically advantageous feature of the hard shell approach. Famously, hackers who have seen
the code that implements something can work out ways to do evil that they could not manage to do
without seeing the code.

The encapsulation brought by the body notion therefore guarantees that you can reason about the
state of body-global variables like start_moment just by reading code within an immediately visibly
apparent scope.

Further, the helper function fmt() is declared as an inner subprogram within the body-private helper
function duration_as_text(). It’s invoked at ten sites there, but isn’t needed anywhere else in the body.

create package stopwatch_owner.stopwatch
 authid definer
is
 -- START is a reserved word.
 procedure start_;
 function reading return varchar2;
end stopwatch;

create package body stopwatch_owner.stopwatch
is
 start_moment double precision not null := 0;
 function duration_as_text(t in number) return varchar2
 is
 ...some useful constants...
 -- RESULT is a reserved word.
 result_ varchar2(32767) not null := '?';
 function fmt(n in number, template in varchar2) return varchar2 is
 begin
 return ltrim(to_char(n, template));
 end;
 begin
 case
 when t < confidence_limit then
 result_ := 'less than ~20 ms';
 when ...
 end case;
 return result_;
 end duration_as_text;
 procedure start_
 is
 begin
 start_moment := dbms_utility.get_time()/100.0;
 end start_;
 function reading return varchar2 is
 begin
 return duration_as_text(dbms_utility.get_time()/100.0 - start_moment);
 end reading;
begin
 -- Optional package initialization code.
 null;
end stopwatch;

grant execute on stopwatch_owner.stopwatch to client

January 26, 2022 page 6

Establishing it as an inner subprogram tersely tells code readers exactly within what scope they need
to understand its use—and therefore the scope within which any code changes would need to be
made if fmt()’s API or meaning is changed.

Notice that dbms_utility.get_time() ships with Oracle Database. Though it’s in fact a function in a
package, it’s morally equivalent to a built-in SQL function. It returns centiseconds since the database
instance was started. Strangely, Oracle Database doesn’t support extract(epoch from…). (Stackoverflow
has indignant questions about this; and you can see workarounds that extract various units like minutes
and seconds, then to multiply these values appropriately and add them all up. Crazy, eh?)

January 26, 2022 page 7

Implementing the stopwatch in PL/pgSQL using a package (strawman)

I didn’t spend much time on the language design here. I simply transliterated the PL/SQL DDLs to
create the spec and the body into a strawman for their possible corresponding PL/pgSQL DDLs using
the spirit of the same general rules as you use, today, to transliterate the PL/SQL DDLs to create a
free-standing function and a free-standing procedure to their actual corresponding PL/pgSQL
DDLs.

Here is the strawman DDL to create the spec:

The items that the spec shown here declares are known in PL/SQL as subprogram (forward) declarations.
You can include a subprogram declaration in any PL/SQL declaration section where the partner
subprogram definitions are found. Some programmers like to write a list of subprogram definitions in the
body for all of the subprograms that aren’t declared in the spec—simply as a documentation device.

Here is the strawman elided DDL to create the body:

Notice that properties like security and language are the same for the spec and the body so they aren’t
repeated in the body’s code. The same thinking applies for properties of the subprograms that the spec
exposes. However, the parameter lists must be explicit in both the spec and the body so that overload
definitions in the body can be tied to their declarations in the spec.

create package stopwatch
 security definer
 language plpgsql
as $spec$
declare
 procedure start();
 function reading() returns text volatile;
end;
$spec$;

create package body stopwatch
as $body$
declare
 start_moment numeric not null := 0.0;
 function duration_as_text(t in numeric) returns text stable
 as
 declare
 ...some useful constants...
 result text not null := '';
 function fmt(n in numeric, template in text) returns text stable
 as
 begin
 return ltrim(to_char(n, template));
 end;
 begin
 case
 when t < confidence_limit then
 result := 'less than ~20 ms';
 when ...
 end case;
 return result;
 end;
 procedure start()
 as
 begin
 start_moment := extract(epoch from clock_timestamp());
 end;
 function reading() returns text volatile
 as
 begin
 return duration_as_text(extract(epoch from clock_timestamp())::numeric - start_moment);
 end;
begin
 -- Optional package initialization code.
 null;
end;
$body$

January 26, 2022 page 8

Presumably, the grant execute statement would be spelled like this:

Implementing the stopwatch in PostgreSQL using schemas

I created a dedicated user called stopwatch_owner to own the schema stopwatch to emulate the spec notion,
the schema stopwatch_body to emulate the body notion, and six free-standing subprograms,
appropriately housed within one or the other of these schemas, to emulate the elements within the
spec and the body. Here are the elided DDLs to create the body emulation. Counter-intuitively, they
come first in the thinking and the installation flow:

Here are the elided DDLs to create the spec emulation.

grant execute on package stopwatch_owner.stopwatch to client

create function stopwatch_body.fmt(n in numeric, template in text) returns text stable
 security definer
 language plpgsql
as $body$
begin
 return ltrim(to_char(n, template));
end;
$body$;

create function stopwatch_body.duration_as_text(t in numeric) returns text stable
 security definer
 language plpgsql
as $body$
declare
 ...some useful constants...
 result text not null := '';
begin
 case
 when t < confidence_limit then
 result := 'less than ~20 ms';
 when ...
 end case;
 return result;
end;
$body$;

create procedure stopwatch_body.start()
 security definer
 language plpgsql
as $body$
declare
 start_moment constant text not null := extract(epoch from clock_timestamp())::text;
begin
 execute format('set stopwatch.start_moment to %L', start_moment);
end;
$body$;

create function stopwatch_body.reading() returns text volatile
 security definer
 language plpgsql
as $body$
declare
 start_moment constant double precision not null := current_setting('stopwatch.start_moment');
 curr_moment constant double precision not null := extract(epoch from clock_timestamp());
begin
 return stopwatch_body.duration_as_text((curr_moment - start_moment)::numeric);
end;
$body$;

create procedure stopwatch.start()
 security definer
 language plpgsql
as $body$
begin
 call stopwatch_body.start();
end;
$body$;

create function stopwatch.reading()
 returns text
 volatile
 security definer
 language plpgsql
as $body$
begin
 return stopwatch_body.reading();
end;
$body$;

January 26, 2022 page 9

Each subprogram in the stopwatch schema is just a trivial jacket for its partner in the stopwatch_body
schema. A grant usage statement is needed for the stopwatch schema, thus:

And a grant execute statement is needed for each subprogram, thus:

and thus:

The design is necessary to achieve the outcome that grantees like client can execute only what the spec,
in a genuine package implementation, would expose and can read only the anodyne
pass-through-code to the partners in the stopwatch_body schema. This approach does, however, leak
the information that the stopwatch_body schema exists. This is a theoretical drawback: it violates the
letter of the principle of least privilege. But, because grantees like client are not given usage on the
stopwatch_body schema, they can discover nothing about it beyond the fact that it houses subprograms
with identical names and parameter lists to their partners in the stopwatch schema.

Discussion

The package notion in PL/SQL provides the best scheme with which to compare what PL/pgSQL
supports for the reasons given earlier:

• The syntax and semantics are generally similar.

• The high-level purpose and the execution model are similar (tight, language-level integration with
SQL; executes in the same process in which the SQL that it invokes executes).

Notwithstanding this, it’s important to realize that the main arguments for enhancing PL/pgSQL to
support a package notion have nothing to do with easing the migration of extant applications that use
Oracle Database’s PL/SQL to use PostgreSQL and PL/pgSQL instead, even though such an
enhancement would doubtless help that endeavor.

Rather, the main arguments are simply to bring the generic benefits to PL/pgSQL programmers that
programmers who use any language that supports a module construct enjoy.

I developed my case for bringing a package notion to PL/pgSQL in two parts:

• First, I showed working code (presented as a single self-contained, re-runnable script) for Oracle
Database that anybody who has access to any version that was released during the past couple of
decades can simply run. And then I showed my sketch of how this might be transliterated into
PL/pgSQL. The code size is very similar. Of course, I’ve no idea how feasible it would be to
support something along these line or how much programming effort it would take.

• Then I showed a runnable implementation that uses, as it must, free-standing PL/pgSQL
subprograms distributed among two schemas with a common owner. This follows the approach
that the PostgreSQL documentation recommends. It’s also presented as a single self-contained,
re-runnable script.

grant usage on schema stopwatch to client

grant execute on procedure stopwatch.start() to client

grant execute on function stopwatch.reading() to client

https://www.postgresql.org/docs/11/plpgsql-porting.html

January 26, 2022 page 10

I tested the Oracle Database script using Version 18.4. And I tested the runnable PostgreSQL script
using PG Version 14.1—and, for good measure using YugabyteDB Version 2.11 (which, in turn uses
the SQL processing code of PG Version 11.2). The results are the same in all three environments.

The runnable PL/pgSQL approach suffers from a number of disadvantages with respect to a package
approach. The following bullets are numbered to allow ease of reference. The order is insignificant.

(1) A package approach uses a documented language feature. Programmers can learn the relevant
notions and syntax, once and for all, and then program in a tightly constrained, and therefore,
uniform, way. This means that code authors don’t need to invent their own conventions for
package emulation and, especially, don’t have to write external documentation to describe these
conventions. Moreover, code that follows a convention is bound to differ between different
development shops—and, in all likelihood, even within a single development shop. This makes
maintenance hard.

(2) In the package approach, the helpers fmt() and duration_as_text() are hidden in the body by a
whitelist notion that the language semantics brings: you don’t want them to be usable except in
the body; and so you don’t ask for this. In contrast, because you do want the start() procedure and
the reading() function to be usable by subprograms outside of the package, you ask for this
explicitly by declaring them in the spec. In the runnable PL/pgSQL approach, you have to
implement the whitelist by a convention-specified use of two schemas and appropriate privileges.

(3) The inner function support provides another language semantics mechanism for the programmer
to express (especially to other readers) the intention that fmt() may be used only in the
implementation of duration_as_text(). This intention could be expressed in the runnable
PL/pgSQL approach by creating a dedicated user, for each subprogram that in the package
approach would use inner subprograms, to own these helpers. The naming, and the grant
statements, would express the programmer’s intention. But, especially because the inner
subprogram notion is defined recursively, this could rapidly get out of hand and subvert the
intention of self-describing clarity of purpose.

(4) The package approach needs just two objects that, visibly and by definition, jointly act as a single
construct. The runnable PL/pgSQL approach in the use case presented here needs two schemas,
six explicit schema objects, and one implicit nonschema object—the user-defined run-time
parameter. (You can discover that this parameter is part of the implementation only by reading
the code.) However, real-world packages in PL/SQL often have on the order of ten subprograms
exposed by the spec, maybe twice that number of body-private helper subprograms, and on the
order of ten package global variables. So here, the spec-body pair would expand to require
thirty-odd create statements together with ten-odd emergent run-time parameters. Reliance on a
proliferation of very many schema objects and nonschema objects, with no self-describing
scheme that they belong together except and externally documented practice convention, is a
huge disadvantage.

(5) The general rule of good practice is that the spec should expose only variables marked constant.
When it’s intended that users of the package may directly change the value of a body-private global
variable, this is done with a setter procedure, exposed by the spec, that typically ensures that the
value that’s set conforms to rules (as could be achieved, less directly, by defining a domain type
for the variable). And when it’s intended that users should access the present value of such a
body-private global variable, this is done with a spec-level observer function. This setter/observer
paradigm is the generic good practice for any language that supports a module notion for
encapsulation.

January 26, 2022 page 11

The runnable PL/pgSQL approach that I used simply cannot emulate body-private global
variables. The session’s client can always set, and read, a user-defined run-time parameter if only it
knows its name. (I do appreciate that show all, documented, implicitly, as “show the value of all
run-time parameters”, in fact shows surprisingly only the system-defined run-time parameters—
even though show foo.bar does show the value of this user-defined run-time parameter.) This brings
a security risk. Some exploits are conducted, in a secured production system, by disgruntled
employees who were able to read the code in the development shop. Knowing the code doesn’t
help you violate the integrity of a genuine body-global variable. But that knowledge would let you
change the value of a user-defined run-time parameter.

(6) A run-time parameter’s value can only be text. This weakly-typed notion implies careful
programming, in general, to typecast a to-be-set value to text and to typecast a to-be-read value to
its intended data type.

(7) A temporary table, with an appropriate accompanying regime of privileges, could emulate strong
typing and body-privacy. But it would require using security definer subprograms. However, the
requirement might be to emulate a security invoker package. (As it turns out—see below—other
considerations force the use of security definer subprograms.)

Moreover (at least as far as I have been able to discover), this would require that the client makes
an explicit initialization call at the start of a session.

(8) The package notion brings a dedicated “hook” for initialization code: the executable section at
the end of the body’s source text. This code runs just once in a session when an element in the
package is first referenced. The runnable PL/pgSQL approach that I used cannot (as far as I can
see) provide an emulation for this.

(9) The requirement that clients who can use the elements that a package spec exposes must not be
able to read the code that defines the body forces the use of security definer subprograms. Else, each
client must be given the explicit privilege to execute all of the subprograms that are intended to be
body-private. And this inevitably allows reading the code. With a genuine package notion, there is
no such spurious conflation of concerns: granting execute on an authid current_user package (this is
how PL/SQL spells security invoker) does not confer the ability to read the text that defines its body.

Conclusion

I believe that I have presented an unassailable case for the value of extending PL/pgSQL to support
a package notion. I cannot accept a counter argument that claims that PL/pgSQL programmers have
no need for a module notion while the designers of very many other programming languages, where
the notion is supported, have shown that they believe that the notion is not language specific and is
generically useful. In particular, therefore, I cannot accept the notion that PL/pgSQL would benefit
from packages only to ease migration from Oracle Database. I believe that the simple use case that I
chose to illustrate this essay is an archetype for a vast range of use cases. The general experience of
PL/SQL programmers, who can choose between free-standing subprograms and grouping these
within packages, is that they almost always choose the package approach.

Of course, I would have to accept counter arguments like, say, the language design of PL/pgSQL, or
of its execution model, mean that the die is irrevocably cast and it would be simply impossible to
enhance it to support packages. I would also have to accept counter arguments based on the relatively
huge implementation cost that such an enhancement would imply.

January 26, 2022 page 12

Bryn Llewellyn — bryn@yugabyte.com
Technical Product Manager
Yugabyte Inc., Sunnyvale, California, USA
January 2022
Bio (at “PostgreSQL Person of the Week”)

https://postgresql.life/post/bryn_llewellyn/

	Why use PL/pgSQL stored procedures at all?
	The use case that the code in this essay implements
	A note about the code
	The helper function fmt(n in …, template in …) return …
	The helper function duration_as_text(t in …) return …

	Implementing the stopwatch in Oracle Database using a package
	Implementing the stopwatch in PL/pgSQL using a package (strawman)
	Implementing the stopwatch in PostgreSQL using schemas
	Discussion
	Conclusion

