
The future is CSN

Alexander Korotkov

Postgres Professional

Alexander Korotkov The future is CSN 1 / 31

Russian developers of PostgreSQL:
Alexander Korotkov, Teodor Sigaev, Oleg Bartunov

▶ Speakers at PGCon, PGConf: 20+ talks
▶ GSoC mentors
▶ PostgreSQL commiƩers (1+1 in progress)
▶ Conference organizers
▶ 50+ years of PostgreSQL expertship:

development, audit, consulƟng
▶ Postgres Professional co-founders

PostgreSQL CORE
▶ Locale support
▶ PostgreSQL extendability:

GiST(KNN), GIN, SP-GiST
▶ Full Text Search (FTS)
▶ NoSQL (hstore, jsonb)
▶ Indexed regexp search
▶ Create AM & Generic WAL
▶ Table engines (WIP)

Extensions
▶ intarray
▶ pg_trgm
▶ ltree
▶ hstore
▶ plantuner
▶ jsquery
▶ RUM

Alexander Korotkov The future is CSN 2 / 31

Why do we need snapshots? (1/5)

Alexander Korotkov The future is CSN 3 / 31

Why do we need snapshots? (2/5)

Alexander Korotkov The future is CSN 4 / 31

Why do we need snapshots? (3/5)

Alexander Korotkov The future is CSN 5 / 31

Why do we need snapshots? (4/5)

Alexander Korotkov The future is CSN 6 / 31

Why do we need snapshots? (5/5)

Alexander Korotkov The future is CSN 7 / 31

ExisƟng MVCC snapshots

Alexander Korotkov The future is CSN 8 / 31

How do snapshots work?

▶ Array of acƟve transacƟon ids is stored in shared
memory.

▶ GetSnapshotData() scans all the acƟve xids while
holding shared ProcArrayLock.

▶ Assigning of new xid doesn’t require ProcArrayLock.
▶ Clearing acƟve xid requires exclusive ProcArrayLock.
▶ 9.6 comes with “group clear xid” opƟmizaƟon.
MulƟple xids of finished transacƟons could be
cleared using single exclusive ProcArrayLock.

Alexander Korotkov The future is CSN 9 / 31

Problem with of snapshots

▶ Nowadays mulƟ-core systems running can run
thousands of backends simultaneously. For short
queries GetSnapshotData() becomes just CPU
expensive.

▶ LWLock subsystem is just not designed for high
concurrency. In parƟcular, exclusive lock waits could
have infinite starvaƟon. Therefore, it’s impossible to
connect while there is high flow of short readonly
queries.

▶ In the mixed read-write workload, ProcArrayLock
could become a boƩleneck.
Alexander Korotkov The future is CSN 10 / 31

Commit sequence number (CSN) snapshots

Alexander Korotkov The future is CSN 11 / 31

CSN development history

▶ Jun 7, 2013 – proposal by Ants Aasma
▶ May 30, 2014 – first path by Heikki Linnakangas
▶ PGCon 2015 – talk by Dilip Kumar (no patch
published)

▶ Aug, 2016 – Heikki returned to this work

Alexander Korotkov The future is CSN 12 / 31

CSN snapshots properƟes

Pro:
▶ Taking snapshots is cheaper. It’s even possible to
make it lockless.

▶ CSN snapshots are more friendly to distributed
systems. Distributed visibility techniques like
incremental snapshots or Clock-SI assumes that
snapshot is represented by single number.

Cons:
▶ Have to map XID⇒ CSN while visibility check.

Alexander Korotkov The future is CSN 13 / 31

XID⇒ CSN map worst case

1 M rows table, xmin is random in 10 M transacƟons

version first scan, ms next scans, ms
master 2500 50
csn 4900 4900

Without CSN we have to lookup CLOG only during first
scan of the table. During first scan hint bits are set.
Second and subsequent scans use hint bits and don’t
lookup CLOG.

Alexander Korotkov The future is CSN 14 / 31

Could we hint XID⇒ CSN map as well?

▶ In general, it’s possible. We could rewrite XID of
commiƩed transacƟon into its CSN.

▶ Xmin and xmax are 32-bit. Usage of 32-bit CSN is
undesirable. We already have xid and mulƟxact
wraparounds. Yet another CSN wraparound would
be discouraging.

▶ Seƫng hint bits is not WAL-logged. We need to
preserve this property.

Alexander Korotkov The future is CSN 15 / 31

Make both XID and CSN 64-bit

▶ Add 64-bit xid_epoch, mulƟxact_epoch and
csn_epoch to page header.

▶ Allocate high bit of xmin and xmax for CSN flag.
▶ Actual xid or csn stored in xmin or xmax should be
found as corresponding epoch plus xmin or xmax.

▶ We sƟll can address 231 xids from xmin and xmax as
we did before.

▶ Wraparound is possible only inside single page. And
it could be resolved by single page freeze.

Alexander Korotkov The future is CSN 16 / 31

CSN-rewrite patch

▶ Use 64-bit XID and CSN as described before.
▶ Rewrite XID to CSN instead of seƫng “commiƩed”
hint bit.

▶ Lockless snapshot taking.
▶ WIP, not published yet.

Alexander Korotkov The future is CSN 17 / 31

XID⇒ CSN map worst case

1 M rows table, xmin is random in 10 M transacƟons

version first scan, ms next scans, ms
master 2500 50
csn 4900 4900
csn-rewrite 4900 50

Subsequent scans of table is as cheap as it was before.
First scan sƟll have a room for opƟmizaƟon.

Alexander Korotkov The future is CSN 18 / 31

Benchmarks

Alexander Korotkov The future is CSN 19 / 31

Taking snapshots (SELECT 1)

0 50 100 150 200 250
Clients

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

T
P
S

pgbench -s 1000 -j $n -c $n -M prepared -f sel1.sql on 4 x 18 cores Intel Xeon E7-8890 processors
median of 3 2-minute runs with shared_buffers = 32GB, max_connections = 300

master
xact-align
csn-rewrite

Alexander Korotkov The future is CSN 20 / 31

Read-only benchmark

0 50 100 150 200 250
Clients

0

500000

1000000

1500000

2000000

T
P
S

pgbench -s 1000 -j $n -c $n -M prepared -S on 4 x 18 cores Intel Xeon E7-8890 processors
median of 3 2-minute runs with shared_buffers = 32GB, max_connections = 300

master
xact-align
csn-rewrite

Alexander Korotkov The future is CSN 21 / 31

Read-write benchmark

0 50 100 150 200 250
Clients

0

20000

40000

60000

80000

100000

120000

140000

160000

T
P
S

pgbench -s 1000 -j $n -c $n -M prepared on 4 x 18 cores Intel Xeon E7-8890 processors
median of 3 2-minute runs with shared_buffers = 32GB, max_connections = 300

master
xact-align
csn-rewrite

Alexander Korotkov The future is CSN 22 / 31

Random: 78% read queries, 22% write
queries

0 50 100 150 200 250
Clients

0

200000

400000

600000

800000

1000000

T
P
S

pgbench -s 1000 -j $n -c $n -M prepared -b select-only@9 -b tpcb-like@1
on 4 x 18 cores Intel Xeon E7-8890 processors

median of 3 2-minute runs with shared_buffers = 32GB, max_connections = 300

master
xact-align
csn-rewrite

Alexander Korotkov The future is CSN 23 / 31

Custom script with extra 20 read queries

\set naccounts 100000 * :scale
\set aid1 random(1, :naccounts)
...
\set aid20 random(1, :naccounts)
\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
SELECT abalance FROM pgbench_accounts WHERE aid IN (:aid1);
...
SELECT abalance FROM pgbench_accounts WHERE aid IN (:aid20);
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

Alexander Korotkov The future is CSN 24 / 31

Custom script with extra 20 read queries

0 50 100 150 200 250
Clients

0

10000

20000

30000

40000

50000

60000

70000

T
P
S

pgbench -s 1000 -j $n -c $n -M prepared -f rrw.sql on 4 x 18 cores Intel Xeon E7-8890 processors
median of 3 2-minute runs with shared_buffers = 32GB, max_connections = 300

master
xact-align
csn-rewrite

Alexander Korotkov The future is CSN 25 / 31

Further PostgreSQL OLTP boƩlenecks

Alexander Korotkov The future is CSN 26 / 31

Further PostgreSQL OLTP boƩlenecks

▶ Buffer manager – slow hash-table, pin, locks etc.
▶ Synchronous protocol.
▶ Executor.
▶ Slow xid allocaƟon – a lot of locks.

Alexander Korotkov The future is CSN 27 / 31

Further PostgreSQL OLTP boƩlenecks in
numbers

▶ SELECT val FROM t WHERE id IN (:id1, ... :id10) –
150K per second = 1.5M key-value pairs per second, no gain.
BoƩleneck in buffer manager.

▶ SELECT 1 with CSN-rewrite patch – 3.9M queries per second.
Protocol and executor are boƩlenecks.

▶ SELECT txid_current() – 390K per second. BoƩleneck in
locks.

Alexander Korotkov The future is CSN 28 / 31

How can we improve PostgreSQL OLTP?

▶ True in-memory engine without buffer manager.
▶ Asynchronous binary protocol for processing more
short queries.

▶ Executor improvements including JIT-compilaƟon.
▶ Lockless xid allocaƟon.

Alexander Korotkov The future is CSN 29 / 31

Conclusion

▶ Despite all the micro-opƟmizaƟons made, our
snapshot model could be a boƩleneck on modern
mulƟcore systems. And it would be even worse
boƩleneck on future systems.

▶ CSN is the way to remove this boƩleneck. It also
more friendly to distributed systems.

▶ It’s possible to minimize XID⇒ CSN map in the
same way we minimize CLOG accesses.

Alexander Korotkov The future is CSN 30 / 31

Thank you for aƩenƟon!

Alexander Korotkov The future is CSN 31 / 31

