
Postgres
Cluster and
Multimaster

Ivan Panchenko

Postgres Pro

postgrespro.ru

2

Cluster definition: several DBs
working as one

Redundancy

Sharding

Parallel query processing

Failover

Dynamic reconfiguration

Cluster-wide data

consistency (distributed

transaction)

Read scalability

Write scalability

Reliability

First attempts (~2006)

Trigger based (SLONY/Londiste) or application

level replication

No real consistency : needs verifications

No real failover (data loss possible)

Read scalability

Only application level sharding for write scalability

3

4

Mainstream evolution

WAL (write ahead logs)

WAL shipping

WAL streaming: on-line async replication.

Logical replication: is more flexible

Synchronous replication: necessary to exclude data loss

HA provided by external tools or performed manually

5

Asymmetric (Single master) clusters

MASTER SYNC REP ASYNC REP

Read

Write

Read Only
In case of

master failure

6

Reliable cluster: main challenge

Split-brain problem:

MASTER NEW MASTER

Read

Write

Read

Write

Temporary or long lasting Internal

connection failure:

• Sync replica promotion

• Some clients connect to Old master

• Some clients connect to New master

• Chaos grows

Client

1

Client

2

Reliable cluster architecture

7

PostgreSQL PostgreSQL PostgreSQL

Distributed configuration

database
Fencing

Client switch agent: DNS, IP, proxy

Replication

Reliable cluster: present solutions

8

Solution Origin License Basis
Split brain

protection

Patroni

(engine, not a

solution)

Zalando MIT Etcd OR

zookeper OR

consul

May be

PAF Dalibo Postgres
Corosync/

Pacemaker
Yes

Repmgr 2nd Quadrant GPLv3 - Should be

Postgres Pro Postgres Pro Commercial
Corosync/

Pacemaker
Yes

Corosync/Pacemaker

Developed by Red Hat.

Resource Agent – an interface utility to manage a resource. Must

implement the following commands:

1. start

2. stop

3. status

9

4. monitor

5. promote

6. demote

Cluster practice

Diagnostics

Failover

Synchronous replica switchover

Asynchronous replica switchover

Recovery

Split brain

Deleting node

Adding node
10

Cluster status transitions

11

Master Sync

Async Off

A minimal cluster

12

Failover visualised

13

OLAP clusters

Citus DB

Green Plum

14

Technology: Postgres fork

License: Commercial; moving

to open source

Transaction consistency: None

Scalability: good

Read scalability in vanilla Postgres

15

Single host 9.6:

Parallel query execution

Read scalability in distributed
database with sharding

16

Table partitioning

FDW: remote partitions

No transaction integrity 

Read scalability in distributed
database with sharding

17

Table partitioning

FDW: remote partitions

No transaction integrity 

http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql

1 billion rows per second : Hans-Juergen Schoenig

DB1 DB2 DB_n

MainDB

.

http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql
http://www.cybertec.at/experimenting-scaling-full-parallelism-postgresql

Write-scalable clusters

Postgres XC (dev.since

2010)

Postgres XL (2014)

Postgres X2 (2016)

18

Technology: Postgres fork

Write scalability: some

Parallel processing: yes

Failover: yes

Transaction consistency: not

enough

BDR (Bidirectional replication)

Logical-replication

based

Post-commit replication

Each transaction

replicated to each node

19

Technology: Postgres fork;

moving to PostgreSQL

License: Commercial; moving

to open source

Transaction consistency: None

Read scalability: good

Postgres Pro Multimaster

Logical replication

based

Each transaction

replicated to each node

Distributed transaction

manager

Internal failover engine

20

Technology: Postgres

extension

License: Commercial; some

parts - open source

Transaction consistency: Yes

Read scalability: good

Write scalability: will have

Part of Postgres Pro Enterprise commercial distribution

Easy in use cluster

No performance penalty for reads.

Transaction can be issued to any node.

No special actions required in case of failure

(excl. client reconnect)

21

Design goals

Identical data on all nodes

Possibility to have local tables

Maximum Postgres compatibility

Writes to any node

Fault tolerance

22

Next step: add sharding for write scalability

Transaction manager requirements

No single point of failure

+: Spanner, Cockroach, Clock-SI

- : Pg-XL

Read-only transactions from a single node without communication

between nodes

+: SAP HANA, Spanner, Cockroach, Clock-SI

- : Pg-XL

23

Why logical replication?

Already existing open source solution by 2nd Quadrant

Very flexible, i.e:

o Can skip tables

o Replicates between different versions

25

Why logical replication?

Already existing open source solution by 2nd Quadrant

Very flexible, i.e:

o Can skip tables

o Replicates between different versions

26

Transaction implementation

27

BE – backend,

WS – Walsender,

Arb – Arbiter,

WR – Walreceiver

Normal work

28

Internal network split

29

Internal network split: recovery

30

Normal work after recovery

31

Failures tested

Node stop-start

Node kill-start

Simple network split

Asymmetric network split

Shift time

Change clock speed on nodes (work in progress)

32

Performance

Read-only performance is the same as in single instance

Commit takes more time (two network roundtrips).

Logical decoding slows down big transactions (to be fixed soon)

33

Information

Postgres Pro documentation: http://postgrespro.com/docs

PgConf.RU : international conference in Moscow – March 15-17.

o http://pgconf.ru/

o Russian and English with simultaneous translation

o 7 Tutorials; > 50 talks

34

http://postgrespro.com/docs
http://pgconf.ru/

postgrespro.ru

http://postgrespro.co.il/

+972 54 305 7642

info@postgrespro.co.il

Postgres Miktzoanim

